Patents by Inventor Muhammed M. Khellah

Muhammed M. Khellah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10984855
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 20, 2021
    Assignee: Intel Corporation
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Publication number: 20190362777
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Application
    Filed: February 25, 2019
    Publication date: November 28, 2019
    Applicant: Intel Corporation
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Publication number: 20170243637
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 24, 2017
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Patent number: 9633716
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 25, 2017
    Assignee: Intel Corporation
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah
  • Publication number: 20160225438
    Abstract: Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
    Type: Application
    Filed: January 6, 2016
    Publication date: August 4, 2016
    Inventors: Jaydeep P. Kulkarni, Bibiche M. Geuskens, James Tschanz, Vivek K. De, Muhammed M. Khellah