Patents by Inventor Mukesh K. Gupta

Mukesh K. Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200323785
    Abstract: A polymeric nanocarrier and method of treating a bone disease are provided. The polymeric nanocarrier includes an amphiphilic copolymer including a hydrophobic block and a hydrophilic block, where the hydrophilic block comprises a random copolymer. The method of treating a bone disease includes administering the polymeric nanocarrier to a subject in need thereof.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Craig L Duvall, Joseph Paul Vanderburgh, Mukesh K. Gupta, Scott A. Guelcher, Julie A. Rhoades
  • Publication number: 20200054755
    Abstract: The presently-disclosed subject matter includes a polymer (i.e., copolymer) comprising a thermally responsive block and a hydrophobic block. In some embodiments the copolymer is a terpolymer. Specific embodiments include a thermo-responsive, ROS degradable ABC triblock terpolymer comprising poly(propylenesulfide)-block-poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PPS-b-PDMA-b-PNIPAAM).
    Type: Application
    Filed: August 21, 2019
    Publication date: February 20, 2020
    Inventors: Craig L. Duvall, Mukesh K Gupta, John R. Martin, Bryan R. Dollinger
  • Patent number: 10532125
    Abstract: The presently-disclosed subject matter includes a compound comprising a first monomer, which is allyl-functionalized and crosslinkable, and a second monomer, which is not crosslinkable. In some embodiments the compounds are photocrosslinkable, and in certain embodiments are photocrosslinkable by ultraviolet light. Also provided are shape memory vascular grafts comprised the of present compounds that can transition from a temporary shape to an original shape when heated above a melting temperature of the graft. Still further provided are methods for treating vascular conditions that utilize embodiments of the present grafts.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 14, 2020
    Assignee: Vanderbilt University
    Inventors: Hak-Joon Sung, Timothy C. Boire, Mukesh K. Gupta, Angela L. Zachman, Sue Hyun-Lee, Colleen M. Brophy
  • Patent number: 10172956
    Abstract: The presently-disclosed subject matter includes nanoparticles that comprise a plurality of assembled polymers. In some embodiments the polymers comprise a first block that includes hydrophilic monomers, the first block substantially forming an outer shell of the nanoparticle, and a second block that includes cationic monomers and hydrophobic monomers, the second block substantially forming a core of the nanoparticle. In some embodiments a polynucleotide is provided that is bound to the cationic monomers of the nanoparticle. The presently-disclosed subject matter also comprises methods for using the present nanoparticles to include RNAi in a cell as well as methods for making the present nanoparticles.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 8, 2019
    Assignee: Vanderbilt University
    Inventors: Craig L. Duvall, Christopher E. Nelson, James Kintzing, Joshua M. Shannon, Mukesh K. Gupta, Scott A. Guelcher, Elizabeth J. Adolph, Jeffrey M. Davidson
  • Publication number: 20180280568
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Application
    Filed: October 14, 2016
    Publication date: October 4, 2018
    Inventors: Scott A. Guelcher, Madison A.P. McEnery, Mukesh K. Gupta, Craig L. Duvall
  • Patent number: 10046086
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: August 14, 2018
    Assignee: Vanderbilt University
    Inventors: Scott A. Guelcher, Madison McGough, Mukesh K. Gupta, Craig L. Duvall, John Martin, Jon Page
  • Publication number: 20170119924
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Application
    Filed: October 11, 2016
    Publication date: May 4, 2017
    Inventors: Scott A. Guelcher, Madison A.P. McEnery, Mukesh K. Gupta, Craig L. Duvall, John Martin, Jon Page
  • Publication number: 20160303241
    Abstract: The presently-disclosed subject matter includes a polymer (i.e., copolymer) comprising a thermally responsive block and a hydrophobic block. In some embodiments the copolymer is a terpolymer. Specific embodiments include a thermo-responsive, ROS degradable ABC triblock terpolymer comprising poly(propylenesulfide)-block-poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PPS-b-PDMA-b-PNIPAAM).
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Inventors: Craig L. Duvall, Mukesh K. Gupta, John R. Martin, Bryan R. Dollinger
  • Publication number: 20160024249
    Abstract: Embodiments of the invention include polymeric compounds that comprise a co-polymer microgel at least one bioactive agent, pharmaceutical compounds comprising compounds of the present invention, and methods for treating damaged tissue to a patient in need thereof by administering by injection an effect amount of the composition.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 28, 2016
    Inventors: Hak-Joon Sung, Xintong Wang, Mukesh K. Gupta, Timothy C. Boire
  • Publication number: 20150283254
    Abstract: The presently-disclosed subject matter includes nanoparticles that comprise a plurality of assembled polymers. In some embodiments the polymers comprise a first block that includes hydrophilic monomers, the first block substantially forming an outer shell of the nanoparticle, and a second block that includes cationic monomers and hydrophobic monomers, the second block substantially forming a core of the nanoparticle. In some embodiments a polynucleotide is provided that is bound to the cationic monomers of the nanoparticle. The presently-disclosed subject matter also comprises methods for using the present nanoparticles to include RNAi in a cell as well as methods for making the present nanoparticles.
    Type: Application
    Filed: October 28, 2013
    Publication date: October 8, 2015
    Inventors: Craig L. Duvall, Christopher E. Nelson, James Kintzing, Joshua M. Shannon, Mukesh K. Gupta, Scott A. Guelcher, Elizabeth J. Adolph, Jeffrey M. Davidson