Patents by Inventor Mukul A. Agrawal

Mukul A. Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10030303
    Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 24, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Yu-Chen Shen, Taiqing Qiu, Robert Woehl, Kieran Mark Tracy, Mukul Agrawal
  • Publication number: 20160190354
    Abstract: Approaches for forming barrier-less seed stacks and contacts are described. In an example, a solar cell includes a substrate and a conductive contact disposed on the substrate. The conductive contact includes a copper layer directly contacting the substrate. In another example, a solar cell includes a substrate and a seed layer disposed directly on the substrate. The seed layer consists essentially of one or more non-diffusion-barrier metal layers. A conductive contact includes a copper layer disposed directly on the seed layer. An exemplary method of fabricating a solar cell involves providing a substrate, and forming a seed layer over the substrate. The seed layer includes one or more non-diffusion-barrier metal layers. The method further involves forming a conductive contact for the solar cell from the seed layer.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Mukul Agrawal, Seung Bum Rim, Michael Cudzinovic
  • Publication number: 20160177439
    Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Yu-Chen Shen, Taiqing Qiu, Robe Woehl, Kieran Mark Tracy, Mukul Agrawal
  • Publication number: 20150179834
    Abstract: Approaches for forming barrier-less seed stacks and contacts are described. In an example, a solar cell includes a substrate and a conductive contact disposed on the substrate. The conductive contact includes a copper layer directly contacting the substrate. In another example, a solar cell includes a substrate and a seed layer disposed directly on the substrate. The seed layer consists essentially of one or more non-diffusion-barrier metal layers. A conductive contact includes a copper layer disposed directly on the seed layer. An exemplary method of fabricating a solar cell involves providing a substrate, and forming a seed layer over the substrate. The seed layer includes one or more non-diffusion-barrier metal layers. The method further involves forming a conductive contact for the solar cell from the seed layer.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Inventors: Mukul Agrawal, Seung Rim, Michael Cudzinovic
  • Publication number: 20120046819
    Abstract: Methods and systems of controlling an autonomous vehicle are provided. A method comprises controlling operations of the vehicle based at least in part on edge costs. An edge is a representation of a path the vehicle can traverse. Edge costs are determined by an estimation system and are based on at least one of an estimated travel time for an edge and a traverse-ability of the edge. The method further comprises sensing conditions of edges the vehicle is traversing and based on the sensed conditions, dynamically updating the edge costs.
    Type: Application
    Filed: September 25, 2008
    Publication date: February 23, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Mukul Agrawal, Daniel Chester Churchill
  • Patent number: 8121749
    Abstract: Methods and systems of controlling an autonomous vehicle are provided. A method comprises controlling operations of the vehicle based at least in part on edge costs. An edge is a representation of a path the vehicle can traverse. Edge costs are determined by an estimation system and are based on at least one of an estimated travel time for an edge and a traverse-ability of the edge. The method further comprises sensing conditions of edges the vehicle is traversing and based on the sensed conditions, dynamically updating the edge costs.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Mukul Agrawal, Daniel Chester Churchill
  • Publication number: 20110272008
    Abstract: Embodiments of the invention generally provide methods for forming a multilayer rear surface passivation layer on a solar cell substrate. The method includes forming a silicon oxide sub-layer having a net charge density of less than or equal to 2.1×1011 Coulombs/cm2 on a rear surface of a p-type doped region formed in a substrate comprising semiconductor material, the rear surface opposite a light receiving surface of the substrate and forming a silicon nitride sub-layer on the silicon oxide sub-layer. Embodiments of the invention also include a solar cell device that may be manufactured according methods disclosed herein.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 10, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hemant P. Mungekar, Mukul Agrawal, Michael P. Stewart, Timothy W. Weidman, Rohit Mishra, Sunhom Paak
  • Publication number: 20110240114
    Abstract: The present invention generally provides a method of forming a high quality passivation layer over a p-type doped region to form a high efficiency solar cell device. Embodiments of the present invention may be especially useful for preparing a surface of a boron doped region formed in a silicon substrate. In one embodiment, the methods include exposing a surface of the solar cell substrate to a plasma to clean and modify the physical, chemical and/or electrical characteristics of the surface and then deposit a charged dielectric layer and passivation layer thereon.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 6, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Michael P. Stewart, Mukul Agrawal, Rohit Mishra, Hemant P. Mungekar, Timothy Weidman
  • Publication number: 20060041776
    Abstract: A system includes a platform on which a plurality of platform-specific I/O and fault-tolerance mechanisms are implemented. The system also includes an embedded software application operating on the platform and middleware which acts as a buffer between the application and the platform. In operation, the middleware logically separates the embedded software application from the platform-specific I/O and fault-tolerance mechanisms, such that the application can be transferred from one platform to another without necessitating complex and time-consuming code changes.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 23, 2006
    Inventors: Mukul Agrawal, Lee Graba, Vicraj Thomas, Saul Cooper
  • Publication number: 20050028160
    Abstract: Scheduling a set of anytime tasks includes assigning a percentage of at least one resource to each of the set of anytime tasks and allowing each of the set of anytime tasks to use the at least one resource in accordance with the respective assigned fraction. The percentage of the at least one resource assigned to each of the set of anytime tasks is subsequently adapted.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 3, 2005
    Inventors: Darren Cofer, John Shackleton, Mukul Agrawal, Nigel Birch
  • Patent number: 6365185
    Abstract: The present invention relates to tablets which are time-controlled to release active agent at different rates in different regions of the digestive tract in order to maintain a substantially constant concentration in the blood. In one embodiment, a new modified release drug delivery system, for once a day peroral use, consisting of a solid core comprising an active agent together with a hydrogel, with the solid core being coated with a semi-permeable, self-destructing membrane which is optionally drilled to provide a release orifice, and then optionally further coated with the same or different active agent material. The device delivers the active agent in a substantially constant effective dose for the duration of the transit through the stomach and small intestine, followed by accelerated release when reaching the large intestine.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: April 2, 2002
    Assignee: University of Cincinnati
    Inventors: Wolfgang A. Ritschel, Mukul A. Agrawal
  • Patent number: 5546301
    Abstract: The present invention relates to a control solution development environment coupled to a runtime environment constructed to insulate the control solution designer as well as the developed control applications from both the hardware and the operating system. This insulation frees the designer from having to deal with a tangle of control and operating system commands and considerations. The runtime environment manages the details of the process system resource and task allocation to implement the control strategies. Since the runtime environment insulates the developed control applications from changes in operating systems and hardware, applications developed to run in this environment are both reusable and portable. The runtime environment is scaleable, fault-tolerant, allows dynamic reconfiguration of the system, integration of diverse sensors and actuators and enables distributed control strategies.
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: August 13, 1996
    Assignee: Honeywell Inc.
    Inventors: Mukul Agrawal, James E. Orrock, Pradip K. Patiath, Lloyd A. Rachor