Patents by Inventor Mukund Bapna

Mukund Bapna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145410
    Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Applicant: Intel Corporation
    Inventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
  • Publication number: 20210407932
    Abstract: Moisture hermetic guard ring structures for semiconductor devices, related systems, and methods of fabrication are disclosed. Such devices systems, and methods include a guard ring structure laterally surrounding semiconductor devices of a device layer and metal interconnects of an interconnect layer, the guard ring structure extending through the interconnect layer, the device layer, and a bonding layer adjacent one of the interconnect layer or the device layer the bonding layer, and contacting a support substrate coupled to the bonding layer. Such devices systems, and methods may further include via structures having the same material system as the guard ring structure and also extending through the interconnect, the device, and bonding layers and contacting a support substrate.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Mohammad Kabir, Conor P. Puls, Babita Dhayal, Han Li, Keith E. Zawadzki, Hannes Greve, Avyaya Jayanthinarasimham, Mukund Bapna, Doug B. Ingerly
  • Patent number: 10854257
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 1, 2020
    Assignees: Regents of the University of Minnesota, Carnegie Mellon University
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna
  • Publication number: 20200176042
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna
  • Patent number: 10586579
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 10, 2020
    Assignees: Regents of the University of Minnesota, Carnegie Mellon University
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna
  • Publication number: 20190295617
    Abstract: A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
    Type: Application
    Filed: July 11, 2018
    Publication date: September 26, 2019
    Inventors: Jian-Ping Wang, Delin Zhang, Sara A. Majetich, Mukund Bapna