Patents by Inventor Mun Kyu Park

Mun Kyu Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240404823
    Abstract: Embodiments of the present disclosure generally relate to methods for gap fill deposition and film densification on microelectronic devices. The method includes forming an oxide layer containing silicon oxide and having an initial wet etch rate (WER) over features disposed on the substrate, and exposing the oxide layer to a first plasma treatment to produce a treated oxide layer. The first plasma treatment includes generating a first plasma and directing the first plasma to the oxide layer. The method also includes exposing the treated oxide layer to a second plasma treatment to produce a densified oxide layer. The second plasma treatment includes generating a second plasma and directing the second plasma to the treated oxide layer. The densified oxide layer has a final WER of less than one-half of the initial WER.
    Type: Application
    Filed: August 13, 2024
    Publication date: December 5, 2024
    Inventors: Jung chan LEE, Mun Kyu PARK, Jun LEE, Euhngi LEE, Kyu-Ha SHIM, Deven Matthew Raj MITTAL, Sungho JO, Timothy MILLER, Jingmei LIANG, Praket Prakash JHA, Sanjay G. KAMATH
  • Patent number: 12094709
    Abstract: Embodiments of the present disclosure generally relate to methods for gap fill deposition and film densification on microelectronic devices. The method includes forming an oxide layer containing silicon oxide and having an initial wet etch rate (WER) over features disposed on the substrate, and exposing the oxide layer to a first plasma treatment to produce a treated oxide layer. The first plasma treatment includes generating a first plasma by a first RF source and directing the first plasma to the oxide layer by a DC bias. The method also includes exposing the treated oxide layer to a second plasma treatment to produce a densified oxide layer. The second plasma treatment includes generating a second plasma by top and side RF sources and directing the second plasma to the treated oxide layer without a bias. The densified oxide layer has a final WER of less than one-half of the initial WER.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: September 17, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jung Chan Lee, Mun Kyu Park, Jun Lee, Euhngi Lee, Kyu-Ha Shim, Deven Matthew Raj Mittal, Sungho Jo, Timothy Miller, Jingmei Liang, Praket Prakash Jha, Sanjay G. Kamath
  • Publication number: 20230037450
    Abstract: Films are modified to include deuterium in an inductive high density plasma chamber. Chamber hardware designs enable tunability of the deuterium concentration uniformity in the film across a substrate. Manufacturing of solid state electronic devices include integrated process flows to modify a film that is substantially free of hydrogen and deuterium to include deuterium.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Mun Kyu Park, Hien M Le, Chih-Chiang Chuang
  • Publication number: 20230030436
    Abstract: Embodiments of the present disclosure generally relate to methods for gap fill deposition and film densification on microelectronic devices. The method includes forming an oxide layer containing silicon oxide and having an initial wet etch rate (WER) over features disposed on the substrate, and exposing the oxide layer to a first plasma treatment to produce a treated oxide layer. The first plasma treatment includes generating a first plasma by a first RF source and directing the first plasma to the oxide layer by a DC bias. The method also includes exposing the treated oxide layer to a second plasma treatment to produce a densified oxide layer. The second plasma treatment includes generating a second plasma by top and side RF sources and directing the second plasma to the treated oxide layer without a bias. The densified oxide layer has a final WER of less than one-half of the initial WER.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Jung Chan LEE, Mun Kyu PARK, Jun LEE, Euhngi LEE, Kyu-Ha SHIM, Deven Matthew Raj MITTAL, Sungho JO, Timothy MILLER, Jingmei LIANG, Praket Prakash JHA, Sanjay G. KAMATH
  • Patent number: 11508584
    Abstract: Films are modified to include deuterium in an inductive high density plasma chamber. Chamber hardware designs enable tunability of the deuterium concentration uniformity in the film across a substrate. Manufacturing of solid state electronic devices include integrated process flows to modify a film that is substantially free of hydrogen and deuterium to include deuterium.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: November 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Mun Kyu Park, Hien M Le, Chih-Chiang Chuang
  • Publication number: 20200395218
    Abstract: Films are modified to include deuterium in an inductive high density plasma chamber. Chamber hardware designs enable tunability of the deuterium concentration uniformity in the film across a substrate. Manufacturing of solid state electronic devices include integrated process flows to modify a film that is substantially free of hydrogen and deuterium to include deuterium.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 17, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Mun Kyu Park, Hien M Le, Chih-Chiang Chuang