Patents by Inventor Munetoshi Ueno

Munetoshi Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11680638
    Abstract: The present invention provides a shift control method implemented in a vehicle equipped with an automatic transmission for controlling an input shaft rotation speed to a target input shaft rotation speed during a shift. The method includes setting of a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift, and setting of a corrected target input shaft rotation speed as the target input shaft rotation speed when the shift is a downshift without a requirement for a driving force of the vehicle, The corrected target input shaft rotation speed is obtained by decreasingly correcting the basic target synchronization rotation speed. Further, a decreasing correction amount of the basic target synchronization rotation speed is set so as to become larger as a deceleration of the vehicle becomes larger.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: June 20, 2023
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hiroki Shimoyama, Munetoshi Ueno, Takefumi Suzuki
  • Publication number: 20220260154
    Abstract: The present invention provides a shift control method implemented in a vehicle equipped with an automatic transmission for controlling an input shaft rotation speed to a target input shaft rotation speed during a shift. The method includes setting of a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift, and setting of a corrected target input shaft rotation speed as the target input shaft rotation speed when the shift is a downshift without a requirement for a driving force of the vehicle, The corrected target input shaft rotation speed is obtained by decreasingly correcting the basic target synchronization rotation speed. Further, a decreasing correction amount of the basic target synchronization rotation speed is set so as to become larger as a deceleration of the vehicle becomes larger.
    Type: Application
    Filed: May 20, 2019
    Publication date: August 18, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroki SHIMOYAMA, Munetoshi UENO, Takefumi SUZUKI
  • Publication number: 20220243805
    Abstract: The present invention provides a shift control method include: setting a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift; determining whether or not an accelerating intention is present when the shift is a downshift with a driving force requirement to the vehicle; when the accelerating intention is present, setting a first target input shaft rotation speed as the target input shaft rotation speed, the first target input shaft rotation speed being obtained by increasingly correcting the basic target synchronization rotation speed; and when the accelerating intention is not present, setting a second target input shaft rotation speed as the target input shaft rotation speed, the second target input shaft rotation speed being obtained by maintaining or decreasingly correcting the basic target synchronization rotation speed.
    Type: Application
    Filed: May 20, 2019
    Publication date: August 4, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroki SHIMOYAMA, Munetoshi UENO, Takefumi SUZUKI
  • Patent number: 9636989
    Abstract: A hybrid vehicle control device includes an engine, a motor/generator, an automatic transmission in which the gear ratio can be fixed by the driver's intention; and a drive wheel. The control device has an assist traveling mode and an engine generation traveling mode as hybrid modes in which the engine and the motor/generator are drive sources. The control device includes a rotational speed limit setting unit which sets a value that exceeds the upper rotational speed limit, at which the motor/generator can carry out a torque output, as the rotational speed limit of the engine motor rotational speed, and a rotational speed limit control unit for reducing the rotational speed limit to the rotational speed limit at which the motor/generator can carry out a torque output, when the engine motor rotational speed has reached the rotational speed limit and there is a torque output request of the motor/generator.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: May 2, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Jun Amemiya, Munetoshi Ueno, Tatsuya Uchida, Noboru Kudo
  • Patent number: 9637108
    Abstract: A vehicular driving torque control apparatus, comprising: a limitation variation rate setting section included in a driving torque control section and configured to set, in a form of a limitation variation rate, a low torque side limitation variation rate used in a low torque side until the target driving torque reaches to a torque variation rate switching threshold value and a high torque side limitation variation rate used in a high torque side exceeding the torque variation rate switching threshold value and to execute a limitation suppression variation rate setting process in which the low torque side limitation variation rate is set to be larger than the high torque side limitation variation rate until the target driving torque reaches to the torque variation rate switching threshold value.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 2, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Munetoshi Ueno, Jun Amemiya, Noboru Kudo
  • Patent number: 9421967
    Abstract: A control device for a hybrid vehicle is configured to enter a driving mode in which a preset engine-start condition is met, and is configured to enter electric vehicle mode when a preset engine-stop condition is met, and includes an engine-start-condition-controlling device which, during travel in the electric vehicle mode, in the event that an electric vehicle travel zone expansion condition that has been set on the basis of vehicle speed VSP and torque demand information reflective of demand by the driver, and that expands the travel zone in the electric vehicle mode, is met, changes the engine-start condition from a baseline start condition, to an expansion engine-start condition for expanding the travel zone in the electric vehicle mode, doing so for the duration of a prescribed time thereafter.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 23, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Munetoshi Ueno
  • Publication number: 20160200310
    Abstract: A hybrid vehicle control device includes an engine, a motor/generator, an automatic transmission in which the gear ratio can be fixed by the driver's intention; and a drive wheel. The control device has an assist traveling mode and an engine generation traveling mode as hybrid modes in which the engine and the motor/generator are drive sources. The control device includes a rotational speed limit setting unit which sets a value that exceeds the upper rotational speed limit, at which the motor/generator can carry out a torque output, as the rotational speed limit of the engine motor rotational speed, and a rotational speed limit control unit for reducing the rotational speed limit to the rotational speed limit at which the motor/generator can carry out a torque output, when the engine motor rotational speed has reached the rotational speed limit and there is a torque output request of the motor/generator.
    Type: Application
    Filed: August 8, 2014
    Publication date: July 14, 2016
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Jun AMEMIYA, Munetoshi UENO, Tatsuya UCHIDA, Noboru KUDO
  • Publication number: 20160185336
    Abstract: A vehicular driving torque control apparatus, comprising: a limitation variation rate setting section included in a driving torque control section and configured to set, in a form of a limitation variation rate, a low torque side limitation variation rate used in a low torque side until the target driving torque reaches to a torque variation rate switching threshold value and a high torque side limitation variation rate used in a high torque side exceeding the torque variation rate switching threshold value and to execute a limitation suppression variation rate setting process in which the low torque side limitation variation rate is set to be larger than the high torque side limitation variation rate until the target driving torque reaches to the torque variation rate switching threshold value.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 30, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Munetoshi UENO, Jun AMEMIYA, Noboru KUDO
  • Patent number: 9321456
    Abstract: Provided is a control device for a hybrid vehicle, capable of suppressing a drive torque variation during engine start control. The hybrid vehicle has an engine (Eng) and a motor/generator (MG). The control device has: an engine start control part that performs engine start control to start the engine (Eng) from an EV mode by increasing a motor rotation speed of the motor/generator (MG), while allowing slippage of a second clutch (CL2), and bringing a first clutch (CL1) into slip engagement; and a drive torque upper limit setting part (600) that sets a drive torque upper limit value (Tdrlim) in the EV mode based on an added motor rotation speed (Nad), which is given by adding an additional rotation speed (N+) to the motor rotation speed (Nmot), as an upper limit of a drive torque transmitted to drive wheels through the second clutch CL2.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 26, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yutaka Takamura, Hiroyuki Ashizawa, Munetoshi Ueno
  • Patent number: 9205833
    Abstract: A hybrid vehicle control device includes an engine start control section that begins an engine start control when a mode transition request to change to a hybrid vehicle mode occurs due to an accelerator operation while traveling in an electric vehicle mode in which a first clutch is opened. The engine start control section begins engagement of the first clutch after slip engagement of a second clutch is determined and starting the engine using a motor as a starter motor. A negative slip detecting/predicting section detects/predicts if a slip polarity of the second clutch has transitioned from positive slip to negative slip after the engine start control has begun and before the engine has started. A forced backup start control section starts the engine with the second clutch in a fully engaged state when a transition of the second clutch to negative slip has been detected or predicted.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 8, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroaki Kawamura, Kaori Tanishima, Fumihiro Yamanaka, Yutaka Takamura, Munetoshi Ueno, Noboru Kudo
  • Publication number: 20150329104
    Abstract: Provided is a control device for a hybrid vehicle, capable of suppressing a drive torque variation during engine start control. The hybrid vehicle has an engine (Eng) and a motor/generator (MG). The control device has: an engine start control part that performs engine start control to start the engine (Eng) from an EV mode by increasing a motor rotation speed of the motor/generator (MG), while allowing slippage of a second clutch (CL2), and bringing a first clutch (CL1) into slip engagement; and a drive torque upper limit setting part (600) that sets a drive torque upper limit value (Tdrlim) in the EV mode based on an added motor rotation speed (Nad), which is given by adding an additional rotation speed (N+) to the motor rotation speed (Nmot), as an upper limit of a drive torque transmitted to drive wheels through the second clutch CL2.
    Type: Application
    Filed: November 21, 2013
    Publication date: November 19, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yutaka TAKAMURA, Hiroyuki ASHIZAWA, Munetoshi UENO
  • Patent number: 9050970
    Abstract: A driving torque control device for a hybrid vehicle has an engine torque estimation unit configured to estimate an engine torque by compensating for a retardation caused by a delay filter in an engine torque instruction value, and a retardation factor selection unit configured to select, as a retardation factor indicating a retardation degree of the delay filter, any one of an increase-side retardation factor for a case where the engine torque instruction value increases and a decrease-side retardation factor for a case where the engine torque instruction value decreases. The retardation factor selection unit performs switching between the increase-side retardation factor and the decrease-side retardation factor in a case where a difference between the engine torque estimation value and the engine torque instruction value as a filter input value is equal to or smaller than a predetermined value.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 9, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Munetoshi Ueno, Takeshi Ohno, Noboru Kudo
  • Publication number: 20150019061
    Abstract: A control device for a hybrid vehicle is configured to enter a driving mode in which a preset engine-start condition is met, and is configured to enter electric vehicle mode when a preset engine-stop condition is met, and includes an engine-start-condition-controlling device which, during travel in the electric vehicle mode, in the event that an electric vehicle travel zone expansion condition that has been set on the basis of vehicle speed VSP and torque demand information reflective of demand by the driver, and that expands the travel zone in the electric vehicle mode, is met, changes the engine-start condition from a baseline start condition, to an expansion engine-start condition for expanding the travel zone in the electric vehicle mode, doing so for the duration of a prescribed time thereafter.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 15, 2015
    Inventor: Munetoshi Ueno
  • Patent number: 8868273
    Abstract: Compatibility between prevention of hunting of engine start and stop and improvement of fuel consumption is achieved during traveling with mode transitions. An apparatus for controlling a hybrid vehicle includes an engine, a motor-generator, a first clutch and a mode transition control means. The motor-generator is disposed in a drive system (power train) between engine and tire wheels to perform a start of the engine and drive for the tire wheels according to motor acceleration and power generation according to regeneration. The first clutch switches between an HEV mode and an EV mode. Mode transition control means implements a delay time from a time at which an engine stop allowance condition is established to a time at which a mode transition from the HEV mode to the EV mode is started in a high vehicle speed area that is higher than a delay time in another vehicle speed area.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 21, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Munetoshi Ueno, Tadashi Okuda, Noboru Kudo
  • Publication number: 20140303822
    Abstract: A hybrid vehicle control device includes an engine start control section that begins an engine start control when a mode transition request to change to a hybrid vehicle mode occurs due to an accelerator operation while traveling in an electric vehicle mode in which a first clutch is opened. The engine start control section begins engagement of the first clutch after slip engagement of a second clutch is determined and starting the engine using a motor as a starter motor. A negative slip detecting/predicting section detects/predicts if a slip polarity of the second clutch has transitioned from positive slip to negative slip after the engine start control has begun and before the engine has started. A forced backup start control section starts the engine with the second clutch in a fully engaged state when a transition of the second clutch to negative slip has been detected or predicted.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 9, 2014
    Inventors: Hiroaki Kawamura, Kaori Tanishima, Fumihiro Yamanaka, Yutaka Takamura, Munetoshi Ueno, Noboru Kudo
  • Patent number: 8688299
    Abstract: In a hybrid vehicle in which a mode change between an electric drive mode and a hybrid drive mode is carried out based on information concerning an operating condition and a driving status, an impairment of operability due to a change of the drive mode at a reverse travel of the vehicle is prevented. Upon a start of the reverse travel, the drive mode before the start of the reverse travel is continued at the start of the reverse travel.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: April 1, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyuki Saito, Munetoshi Ueno, Hidetoshi Tsukidate
  • Patent number: 8620566
    Abstract: An accelerator pedal depression force control apparatus for a hybrid vehicle is arranged to increase the depression force of the accelerator pedal than a base depression force when the accelerator opening degree becomes larger than an accelerator opening degree threshold value, and arranged to set a the first accelerator opening degree based on an accelerator opening degree which switches from a first running mode in which the vehicle runs by driving only the electric motor, to a second running mode in which the internal combustion engine is driven, to set a second accelerator opening degree based on the accelerator opening degree by which the vehicle can run at a constant speed at each vehicle speed, and to set the accelerator opening degree threshold value as a larger one of the first accelerator opening degree and the second accelerator opening degree.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 31, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Munetoshi Ueno, Masahide Hashida, Daisuke Yoshinoya
  • Publication number: 20130226385
    Abstract: A driving torque control device for a hybrid vehicle has an engine torque estimation unit configured to estimate an engine torque by compensating for a retardation caused by a delay filter in an engine torque instruction value, and a retardation factor selection unit configured to select, as a retardation factor indicating a retardation degree of the delay filter, any one of an increase-side retardation factor for a case where the engine torque instruction value increases and a decrease-side retardation factor for a case where the engine torque instruction value decreases. The retardation factor selection unit performs switching between the increase-side retardation factor and the decrease-side retardation factor in a case where a difference between the engine torque estimation value and the engine torque instruction value as a filter input value is equal to or smaller than a predetermined value.
    Type: Application
    Filed: October 25, 2011
    Publication date: August 29, 2013
    Inventors: Munetoshi Ueno, Takeshi Ohno, Noboru Kudo
  • Patent number: 8509980
    Abstract: A hybrid vehicle includes an engine, a motor, the engine and the motor being driving sources, a first traveling mode in which the vehicle is driven utilizing an output of the engine, and a second traveling mode in which the vehicle is driven through an output of the motor with the engine stopped. The hybrid vehicle further includes an air density detecting section configured to detect an air density of an environment under which the vehicle travels and, in a case where the detected air density is reduced with respect to a standard air density, the motor output in the second traveling mode is reduced with respect to the motor output in a standard air density such that a driving force of the vehicle in the second traveling mode when the traveling mode is switched approaches the driving force of the vehicle in the first traveling mode.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: August 13, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroshi Abe, Takeshi Ohno, Toshio Honda, Takeshi Hirata, Munetoshi Ueno
  • Patent number: 8491442
    Abstract: A hybrid vehicle is taught herein in which a clutch is disposed between an engine and a motor/generator and disengagement of the clutch is controlled in a coasting drive while dragging the engine. A drive controller engages the clutch so that the vehicle coasts while dragging the engine at a time of coasting deceleration. While coasting, when the stepped transmission of the hybrid vehicle downshifts, the clutch is disengaged during the downshift.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: July 23, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masakazu Saito, Munetoshi Ueno