Patents by Inventor Munir D. Khokhar

Munir D. Khokhar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210301213
    Abstract: Processes for producing olefins include integration of steam cracking with a dual catalyst metathesis process. The processes include steam cracking a hydrocarbon feed to form a cracking reaction effluent containing butenes, separating the cracking reaction effluent to produce a cracking C4 effluent including normal butenes, isobutene, and 1,3-butadiene, subjecting the cracking C4 effluent to selective hydrogenation to convert 1,3-butadiene in the cracking C4 effluent to normal butenes, removing isobutene from a hydrogenation effluent to produce a metathesis feed containing normal butenes, and contacting the metathesis feed with a metathesis catalyst and a cracking catalyst directly downstream of the metathesis catalyst to produce a metathesis reaction effluent.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel K Shaikh, Raed H Abudawoud, Zhonglin Zhang, Munir D Khokhar, Furqan Aljumah
  • Publication number: 20210238485
    Abstract: Processes for producing olefins include introducing a hydrocarbon feed to a high-severity fluidized catalytic cracking system, contacting the hydrocarbon feed with a cracking catalyst under high-severity conditions in the high-severity fluidized catalytic cracking system to produce a cracking reaction effluent comprising butene, and passing at least a portion of the cracking reaction effluent, which includes at least butene, to a metathesis system. The processes further include contacting the portion of the cracking reaction effluent with a metathesis catalyst in the metathesis system, which causes at least a portion of the butene in the cracking C4 effluent to undergo a metathesis reaction to produce a metathesis reaction effluent comprising at least one of ethylene, propene, or both. The processes may further include separating a metathesis C5+ effluent from the metathesis reaction effluent and passing the metathesis C5+ effluent back to the high-severity fluidized catalytic cracking unit.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 5, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel K. Shaikh, Raed H. Abudawoud, Zhonglin Zhang, Munir D. Khokhar, Furqan Aljumah
  • Publication number: 20210170367
    Abstract: The present disclosure includes a metathesis catalyst comprising 80 weight percent to 99 weight percent catalyst support material and 1 weight percent to 20 weight percent catalytically active compound, based on the total weight of the metathesis catalyst. The catalyst support material may comprise carbon. The catalytically active compound may comprise tungsten and be supported by the catalyst support material. Methods of producing olefins through the metathesis of butene using the metathesis catalyst is also disclosed.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Maha Alsayegh, Munir D. Khokhar
  • Publication number: 20210162395
    Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, and calcining the magnesium oxide precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and cetrimonium bromide. Methods of producing 1-butene from a 2-butene-containing feedstock with the isomerization catalyst are also disclosed.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Sohel K. Shaikh, Munir D. Khokhar
  • Publication number: 20210162394
    Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, and calcining the magnesium oxide precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and polyethylene glycol. Methods of producing propene from a butene-containing feedstock with the isomerization catalyst and a metathesis catalyst are also disclosed.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Sohel K. Shaikh, Munir D. Khokhar, Faisal H. Alshafei
  • Publication number: 20210162384
    Abstract: Composite catalysts includes zeolite particles at least partially embedded in a catalyst support material and at least one catalytically active compound deposited on the outer surfaces and pore surfaces of the catalyst support material, zeolite particles, or both. A method of making the composite catalysts may include preparing a catalyst precursor mixture that includes the zeolite, catalyst support material, triblock copolymer surfactant, and the catalytically active compound precursor and spray drying the catalyst precursor mixture. The composite catalysts may be used as a single catalyst for conducting olefin metathesis and cracking reactions. A method for producing propene may include contacting a butene-containing feed with the composite catalysts.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Zahra Almisbaa, Sohel K. Shaikh, Raed Abudawoud
  • Patent number: 10961171
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; dispersing a solid metal-based co-catalyst onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: March 30, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Patent number: 10934231
    Abstract: Processes and multiple-stage catalyst systems are disclosed for producing propene by at least partially isomerizing butene in an isomerization reaction zone having an isomerization catalyst to form an isomerization reaction product, at least partially metathesizing the isomerization reaction product in a metathesis reaction zone having a metathesis catalyst to form a metathesis reaction product, and at least partially cracking the metathesis reaction product in a cracking reaction zone having a cracking catalyst. The isomerization catalyst may be MgO, and the metathesis catalyst may be a mesoporous silica catalyst support impregnated with a metal oxide. The metathesis reaction zone may be downstream of the isomerization reaction zone, and the cracking reaction zone may be downstream of the metathesis reaction zone.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 2, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Sohel K. Shaikh
  • Patent number: 10919822
    Abstract: Processes and multiple-stage catalyst systems are disclosed for producing propylene from butene by at least partially metathesizing butene in a metathesizing reaction zone having a metathesis catalyst to form a metathesis reaction product and at least partially cracking the metathesis reaction product in a cracking reaction zone having a cracking catalyst to form a cracking reaction product that includes propylene. The metathesis catalyst may be a mesoporous silica-alumina catalyst support impregnated with metal oxide having a mesoporous silica-alumina catalyst support comprising from 5 weight percent to 50 weight percent alumina. The cracking catalyst may be a MFI structured silica-containing catalyst. The cracking reaction zone may be downstream of the metathesis reaction zone.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: February 16, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Faisal H. Alshafei, Noor A. Sulais, Sohel K. Shaikh, Raed H. Abudawoud
  • Patent number: 10906026
    Abstract: Provided here are catalyst compositions containing tungsten oxide on silica supports and prepared by spray drying a mixture containing a tungsten precursor, silica support, and a surfactant. Also provided here are methods of using the catalytic compositions, prepared by spray drying, in an olefin metathesis process to produce propylene from butenes.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: February 2, 2021
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Sohel K. Shaikh, Mohammed R. Alalouni, Gopal Juttu
  • Publication number: 20200131099
    Abstract: Embodiments of processes and multiple-stage catalyst systems for producing propylene comprising introducing a hydrocarbon stream comprising 2-butene to an isomerization catalyst zone to isomerize the 2-butene to 1-butene, passing the 2-butene and 1-butene to a metathesis catalyst zone to cross-metathesize the 2-butene and 1-butene into a metathesis product stream comprising propylene and C4-C6 olefins, and cracking the metathesis product stream in a catalyst cracking zone to produce propylene. The isomerization catalyst zone comprises a silica-alumina catalyst with a ratio by weight of alumina to silica from 1:99 to 20:80. The metathesis catalyst comprises a mesoporous silica catalyst support impregnated with metal oxide. The catalyst cracking zone comprises a mordenite framework inverted (MFI) structured silica catalyst.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 30, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Noor A. Sulais, Mohammed R. Alalouni, Sohel K. Shaikh
  • Publication number: 20200115298
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; dispersing a solid metal-based co-catalyst onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 16, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Publication number: 20200115299
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; impregnating a metal oxide co-catalyst comprising a metal oxide onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 16, 2020
    Applicants: Saudi Arabian Oil Company, Aramco Services Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Publication number: 20200115300
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; dispersing a solid metal-based co-catalyst onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Application
    Filed: July 25, 2019
    Publication date: April 16, 2020
    Applicants: Saudi Arabian Oil Company, Aramco Services Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Patent number: 10550048
    Abstract: Embodiments of processes and multiple-stage catalyst systems for producing propylene comprising introducing a hydrocarbon stream comprising 2-butene to an isomerization catalyst zone to isomerize the 2-butene to 1-butene, passing the 2-butene and 1-butene to a metathesis catalyst zone to cross-metathesize the 2-butene and 1-butene into a metathesis product stream comprising propylene and C4-C6 olefins, and cracking the metathesis product stream in a catalyst cracking zone to produce propylene. The isomerization catalyst zone comprises a silica-alumina catalyst with a ratio by weight of alumina to silica from 1:99 to 20:80. The metathesis catalyst comprises a mesoporous silica catalyst support impregnated with metal oxide. The catalyst cracking zone comprises a mordenite framework inverted (MFI) structured silica catalyst.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: February 4, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Noor A. Sulais, Mohammed R. Alalouni, Sohel K. Shaikh
  • Patent number: 10407363
    Abstract: Processes, systems, and catalysts for the conversion of 2-butene to 1,3-butaidene without the use of steam or, in some embodiments, with a reduced use of steam as compared to prior art processes are provided. The catalyst includes tungsten trioxide (WO3) on an inorganic support includes activated magnesium oxide (MgO) and may be referred to as a “dual catalyst” or a “co-catalyst.” Embodiments of the catalyst. A process for the production of 1,3-butadiene may include contacting a feed stream of 2-butene with a WO3-inorganic support catalyst or a MgO and WO3-inorganic support catalyst and may be performed without steam in the feed stream.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: September 10, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Miao Sun, Munir D. Khokhar, Zhonglin Zhang, Sohel K. Shaikh, Mark P. Kaminsky
  • Publication number: 20190241488
    Abstract: Processes and multiple-stage catalyst systems are disclosed for producing propylene from butene by at least partially metathesizing butene in a metathesizing reaction zone having a metathesis catalyst to form a metathesis reaction product and at least partially cracking the metathesis reaction product in a cracking reaction zone having a cracking catalyst to form a cracking reaction product that includes propylene. The metathesis catalyst may be a mesoporous silica-alumina catalyst support impregnated with metal oxide having a mesoporous silica-alumina catalyst support comprising from 5 weight percent to 50 weight percent alumina. The cracking catalyst may be a MFI structured silica-containing catalyst. The cracking reaction zone may be downstream of the metathesis reaction zone.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Faisal H. Alshafei, Noor A. Sulais, Sohel K. Shaikh, Raed H. Abudawoud
  • Patent number: 10329225
    Abstract: Processes and multiple-stage catalyst systems are disclosed for producing propylene from butene by at least partially metathesizing butene in a metathesizing reaction zone having a metathesis catalyst to form a metathesis reaction product and at least partially cracking the metathesis reaction product in a cracking reaction zone having a cracking catalyst to form a cracking reaction product that includes propylene. The metathesis catalyst may be a mesoporous silica-alumina catalyst support impregnated with metal oxide having a mesoporous silica-alumina catalyst support comprising from 5 weight percent to 50 weight percent alumina. The cracking catalyst may be a MFI structured silica-containing catalyst. The cracking reaction zone may be downstream of the metathesis reaction zone.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 25, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Faisal H. Alshafei, Noor A. Sulais, Sohel K. Shaikh, Raed H. Abudawoud
  • Publication number: 20190118164
    Abstract: Provided here are catalyst compositions containing tungsten oxide on silica supports and prepared by spray drying a mixture containing a tungsten precursor, silica support, and a surfactant. Also provided here are methods of using the catalytic compositions, prepared by spray drying, in an olefin metathesis process to produce propylene from butenes.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 25, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Sohel K. Shaikh, Mohammed R. Alalouni, Gopal Juttu
  • Publication number: 20190055175
    Abstract: Processes, systems, and catalysts for the conversion of 2-butene to 1,3-butaidene without the use of steam or, in some embodiments, with a reduced use of steam as compared to prior art processes are provided. The catalyst includes tungsten trioxide (WO3) on an inorganic support includes activated magnesium oxide (MgO) and may be referred to as a “dual catalyst” or a “co-catalyst.” Embodiments of the catalyst. A process for the production of 1,3-butadiene may include contacting a feed stream of 2-butene with a WO3-inorganic support catalyst or a MgO and WO3-inorganic support catalyst and may be performed without steam in the feed stream.
    Type: Application
    Filed: August 16, 2017
    Publication date: February 21, 2019
    Inventors: Faisal H. Alshafei, Miao Sun, Munir D. Khokhar, Zhonglin Zhang, Sohel K. Shaikh, Mark P. Kaminsky