Patents by Inventor Munir M. ELDESOUKI

Munir M. ELDESOUKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11127591
    Abstract: Methods of direct growth of high quality group III-V and group III-N based materials and semiconductor device structures in the form of nanowires, planar thin film, and nanowires-based devices on metal substrates are presented. The present compound semiconductor all-metal scheme greatly simplifies the fabrication process of high power light emitters overcoming limited thermal and electrical conductivity of nanowires grown on silicon substrates and metal thin film in prior art. In an embodiment the methods include: (i) providing a metal substrate; (ii) forming a transition metal dichalcogenide (TMDC) layer on a surface of the metal substrate; and (iii) growing a semiconductor epilayer on the transition metal dichalcogenide layer using a semiconductor epitaxy growth system. In an embodiment, the semiconductor device structures can be compound semiconductors in contact with a layer of metal dichalcogenide, wherein the layer of metal dichalcogenide is in contact with a metal substrate.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: September 21, 2021
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chao Zhao, Tien Khee Ng, Lain-Jong Li, Boon Siew Ooi, Ahmed Y. Alyameni, Munir M. Eldesouki
  • Publication number: 20200328079
    Abstract: Methods of direct growth of high quality group III-V and group III-N based materials and semiconductor device structures in the form of nanowires, planar thin film, and nanowires-based devices on metal substrates are presented. The present compound semiconductor all-metal scheme greatly simplifies the fabrication process of high power light emitters overcoming limited thermal and electrical conductivity of nanowires grown on silicon substrates and metal thin film in prior art. In an embodiment the methods include: (i) providing a metal substrate; (ii) forming a transition metal dichalcogenide (TMDC) layer on a surface of the metal substrate; and (iii) growing a semiconductor epilayer on the transition metal dichalcogenide layer using a semiconductor epitaxy growth system. In an embodiment, the semiconductor device structures can be compound semiconductors in contact with a layer of metal dichalcogenide, wherein the layer of metal dichalcogenide is in contact with a metal substrate.
    Type: Application
    Filed: May 9, 2017
    Publication date: October 15, 2020
    Inventors: Chao ZHAO, Tien Khee NG, Lain-Jong LI, Boon Siew OOI, Ahmed Y. ALYAMENI, Munir M. ELDESOUKI