Patents by Inventor Munirah Abdullah ALMESSIERE

Munirah Abdullah ALMESSIERE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250022640
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: October 1, 2024
    Publication date: January 16, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Patent number: 12183494
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: August 1, 2024
    Date of Patent: December 31, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Publication number: 20240395444
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: August 1, 2024
    Publication date: November 28, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Publication number: 20240381789
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Faten Ben AZZOUZ
  • Patent number: 12144266
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Grant
    Filed: July 23, 2024
    Date of Patent: November 12, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Faten Ben Azzouz
  • Patent number: 12139411
    Abstract: A method for forming hollow silica spheres by dissolving a hydrolyzable aryl silane in an aqueous solution of water and an acid to form a hydrolyzed silane solution, mixing the hydrolyzed silane solution with a hydroxide base to form a precipitate, and calcining the precipitate in a multi-stage calcination procedure that includes (a) heating to a first temperature of 180 to 240° C. with a first ramp rate of 3 to 10° C./min and holding the first temperature for 2 minutes to 2 hours, then (b) heating to a second temperature of 600 to 740° C. at a second ramp rate of 0.1 to 4° C./min, and holding the second temperature for 2 to 24 hours.
    Type: Grant
    Filed: May 10, 2024
    Date of Patent: November 12, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Ayhan Bozkurt, Seyda Tugba Gunday Anil, Munirah Abdullah Almessiere, Sultan Akhtar
  • Patent number: 12131852
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: November 28, 2023
    Date of Patent: October 29, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Patent number: 12100538
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: September 24, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Patent number: 12089510
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Grant
    Filed: March 11, 2024
    Date of Patent: September 10, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Faten Ben Azzouz
  • Publication number: 20240294387
    Abstract: A method for forming hollow silica spheres by dissolving a hydrolyzable aryl silane in an aqueous solution of water and an acid to form a hydrolyzed silane solution, mixing the hydrolyzed silane solution with a hydroxide base to form a precipitate, and calcining the precipitate in a multi-stage calcination procedure that includes (a) heating to a first temperature of 180 to 240° C. with a first ramp rate of 3 to 10° C./min and holding the first temperature for 2 minutes to 2 hours, then (b) heating to a second temperature of 600 to 740° C. at a second ramp rate of 0.1 to 4° C./min, and holding the second temperature for 2 to 24 hours.
    Type: Application
    Filed: May 10, 2024
    Publication date: September 5, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Ayhan BOZKURT, Seyda Tugba Gunday ANIL, Munirah Abdullah ALMESSIERE, Sultan AKHTAR
  • Patent number: 12069968
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: August 20, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Faten Ben Azzouz
  • Publication number: 20240242865
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: July 13, 2023
    Publication date: July 18, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Publication number: 20240224818
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Application
    Filed: March 11, 2024
    Publication date: July 4, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Faten Ben AZZOUZ
  • Patent number: 12017922
    Abstract: A method for forming hollow silica spheres by dissolving a hydrolyzable aryl silane in an aqueous solution of water and an acid to form a hydrolyzed silane solution, mixing the hydrolyzed silane solution with a hydroxide base to form a precipitate, and calcining the precipitate in a multi-stage calcination procedure that includes (a) heating to a first temperature of 180 to 240° C. with a first ramp rate of 3 to 10° C./min and holding the first temperature for 2 minutes to 2 hours, then (b) heating to a second temperature of 600 to 740° C. at a second ramp rate of 0.1 to 4° C./min, and holding the second temperature for 2 to 24 hours.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: June 25, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Ayhan Bozkurt, Seyda Tugba Gunday Anil, Munirah Abdullah Almessiere, Sultan Akhtar
  • Publication number: 20240096532
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Publication number: 20240099162
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Application
    Filed: August 3, 2023
    Publication date: March 21, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Faten Ben AZZOUZ
  • Publication number: 20240043280
    Abstract: A superconducting material is described. The superconducting material includes a rare-earth barium copper oxide (ReBCO) matrix, 0.01 to 0.5 weight percentage (wt. %), WO3 nanoparticles, based on the total weight of superconducting material, and 0.01 to 0.5 wt. % barium titanate nanoparticles, based on the total weight of superconducting material. A method of making superconducting material is also described. The method includes mixing WO3 nanoparticles, barium titanate nanoparticles, and ReBCO particles to form a particulate mixture; pressing the particulate mixture at a pressure of 500 to 1000 megapascals (MPa) to form a solid sample; and heating the solid sample at 800 to 1100 degrees centigrade (° C.) for 1 to 24 hours to form the superconducting material.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 8, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Sarah Awwadh ALOTAIBI, Munirah Abdullah ALMESSIERE
  • Patent number: 11869693
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Publication number: 20230320997
    Abstract: A magnetoelectric nanocomposite (MEN) is described. The MEN are used as a colorectal cancer treatment. The MEN includes a shell having at least one ferroelectric compound and a rare earth (R) metal doped spinel ferrite nanoparticle (SFNP) core, of a formula of CoxMn1-xR2-yFeyOz wherein x= 0.1-0.9, y = 1.90-1.99, and z = 3-5; and R is at least one rare earth metal selected from the group consisting of cerium (Ce), europium (Eu), gadolinium (Gd), terbium (Tb) and thulium (Tm). A method of making MENs is also provided.
    Type: Application
    Filed: March 22, 2022
    Publication date: October 12, 2023
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Tahani Mohammed ALFAREED, Munirah Abdullah ALMESSIERE, Yassine SLIMANI, Firdos Alam KHAN, Ebtesam Abdullah AL-SUHAIMI, Abdulhadi BAYKAL
  • Patent number: 11770983
    Abstract: A superconducting material includes YBa2Cu3O7-? and a nano-structured, preferably nanowires, WO3 dopant in a range of from 0.01 to 3.0 wt. %, preferably 0.075 to 0.2 wt. %, based on total material weight. Methods of making the superconductor may preferably avoid solvents and pursue solid-state synthesis employing Y, Ba, and/or Cu oxides and/or carbonates.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: September 26, 2023
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Faten Ben Azzouz