Patents by Inventor Murali Sethumadhavan

Murali Sethumadhavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876295
    Abstract: An electromagnetic device includes: an electromagnetically reflective structure having an electrically conductive structure and a plurality of electrically conductive electromagnetic reflectors that are integrally formed with or are in electrical communication with the electrically conductive structure; wherein the plurality of reflectors are disposed relative to each other in an ordered arrangement; and, wherein each reflector of the plurality of reflectors forms a wall that defines and at least partially circumscribes a recess having an electrically conductive base that forms part of or is in electrical communication with the electrically conductive structure.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: January 16, 2024
    Assignee: ROGERS CORPORATION
    Inventors: Gianni Taraschi, Kristi Pance, Shawn P. Williams, Karl E. Sprentall, Stephen O′Connor, Murali Sethumadhavan, Michael S. White
  • Publication number: 20240002554
    Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
    Type: Application
    Filed: August 30, 2023
    Publication date: January 4, 2024
    Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
  • Patent number: 11787878
    Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: October 17, 2023
    Assignee: ROGERS CORPORATION
    Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
  • Publication number: 20230242709
    Abstract: In an aspect, a thermosettable composition comprises an imide extended compound and a reactive monomer that is free-radically crosslinkable with the reactive end groups of the imide extended compound to produce a crosslinked network. A thermoset composite can be derived from the thermosettable composition and a multilayer article can include the thermoset composite in the form of a layer. The article can be an antenna, a bond ply, a semiconductor substrate build-up/redistribution layer dielectric film, a circuit board, resin-coated-copper (RCC), or a flexible core.
    Type: Application
    Filed: January 5, 2023
    Publication date: August 3, 2023
    Inventors: Thomas A. Koes, Nazeef Azam, Murali Sethumadhavan
  • Patent number: 11626228
    Abstract: A magneto-dielectric material operable between a minimum frequency and a maximum frequency, having: a plurality of layers that alternate between a dielectric material and a ferromagnetic material, lowermost and uppermost layers of the plurality of layers each being a dielectric material; each layer of the plurality of ferromagnetic material layers having a thickness equal to or greater than 1/15th a skin depth of the respective ferromagnetic material at the maximum frequency, and equal to or less than ?th the skin depth of the respective ferromagnetic material at the maximum frequency; each layer of the plurality of dielectric material layers having a thickness and a dielectric constant that provides a dielectric withstand voltage across the respective thickness of equal to or greater than 150 Volts peak and equal to or less than 1,500 Volts peak; and, the plurality of layers having an overall thickness equal to or less than one wavelength of the minimum frequency in the plurality of layers.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 11, 2023
    Assignee: ROGERS CORPORATION
    Inventors: Karl E. Sprentall, Aniruddha J. Shere, Yajie Chen, Murali Sethumadhavan
  • Patent number: 11552390
    Abstract: An electromagnetic device includes: an electrically conductive ground structure; at least one dielectric resonator antenna (DRA) disposed on the ground structure; at least one electromagnetic (EM) beam shaper disposed proximate a corresponding one of the DRA; and, at least one signal feed disposed electromagnetically coupled to a corresponding one of the DRA. The at least one EM beam shaper having: an electrically conductive horn; a body of dielectric material having a dielectric constant that varies across the body of dielectric material in a specific direction; or, both the electrically conductive horn and the body of dielectric material.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 10, 2023
    Assignee: ROGERS CORPORATION
    Inventors: Murali Sethumadhavan, Michael S. White, Gianni Taraschi, Kristi Pance
  • Patent number: 11545753
    Abstract: An electromagnetic, EM, device, includes: a substrate having a dielectric layer and a first conductive layer at a first side of the substrate, the substrate having a via that extends at least partially through the substrate from the first side toward an opposing second side of the substrate; at least one dielectric structure having at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having a first average dielectric constant, the at least one dielectric structure further having a second dielectric portion that is contiguous with the first dielectric portion; wherein the second dielectric portion extends into the via of the substrate, the via having a mechanical interlock surface; and wherein the at least one dielectric structure includes a mechanical interlock between the second dielectric portion and the mechanical interlock surface of the via of the substrate.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 3, 2023
    Assignee: ROGERS CORPORATION
    Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
  • Publication number: 20220298270
    Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 22, 2022
    Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
  • Publication number: 20220271440
    Abstract: A connected-DRA array including: a plurality of DRAs each having at least one volume of non-gaseous dielectric material; each of the plurality of DRAs having a proximal end and a distal end, and an overall height, H, from the proximal end to the distal end; wherein each of the plurality of DRAs is physically connected to at least one other of the plurality of DRAs via a relatively thin connecting structure being relatively thin as compared to an overall outside dimension of one of the plurality of DRAs, each connecting structure having a cross sectional overall height, h, as observed in the elevation view of the connected-DRA array, that is less than the overall height, H, of a respective connected DRA and being formed of a thin sheet of the at least one volume of non-gaseous dielectric material; wherein the thin sheet extends over a substantial portion of the connected-DRA array as observed in a plan view of the connected-DRA array.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 25, 2022
    Inventors: Kristi Pance, Gianni Taraschi, Murali Sethumadhavan, Stephen O'Connor, Karl E. Sprentall, Shawn P. Williams
  • Patent number: 11401353
    Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 2, 2022
    Assignee: ROGERS CORPORATION
    Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
  • Publication number: 20220181715
    Abstract: A thermally insulating multilayer sheet includes a compressible layer, and a thermal insulation layer, a flame retardant layer, or a combination thereof disposed on the compressible layer.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 9, 2022
    Inventors: Jing Jiang, Wei Wang, Jian Zhang, Lei Liu, Christopher Churchill, Aniruddha Shere, Murali Sethumadhavan
  • Publication number: 20220158351
    Abstract: An electromagnetic, EM, device, includes: a substrate having a dielectric layer and a first conductive layer at a first side of the substrate, the substrate having a via that extends at least partially through the substrate from the first side toward an opposing second side of the substrate; at least one dielectric structure having at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having a first average dielectric constant, the at least one dielectric structure further having a second dielectric portion that is contiguous with the first dielectric portion; wherein the second dielectric portion extends into the via of the substrate, the via having a mechanical interlock surface; and wherein the at least one dielectric structure includes a mechanical interlock between the second dielectric portion and the mechanical interlock surface of the via of the substrate.
    Type: Application
    Filed: December 6, 2021
    Publication date: May 19, 2022
    Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
  • Patent number: 11283189
    Abstract: A connected dielectric resonator antenna array (connected-DRA array) operational at an operating frequency and associated wavelength, includes: a plurality of dielectric resonator antennas (DRAs), each of the plurality of DRAs having at least one volume of non-gaseous dielectric material; wherein each of the plurality of DRAs is physically connected to at least one other of the plurality of DRAs via a relatively thin connecting structure, each connecting structure being relatively thin as compared to an overall outside dimension of one of the plurality of DRAs, each connecting structure having a cross sectional overall height that is less than an overall height of a respective connected DRA and being formed from at least one of the at least one volume of non-gaseous dielectric material, each connecting structure and the associated volume of the at least one volume of non-gaseous dielectric material forming a single monolithic portion of the connected-DRA array.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: March 22, 2022
    Assignee: ROGERS CORPORATION
    Inventors: Kristi Pance, Gianni Taraschi, Murali Sethumadhavan, Stephen O'Connor, Karl E. Sprentall, Shawn P. Williams
  • Patent number: 11239563
    Abstract: In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: February 1, 2022
    Assignee: ROGERS CORPORATION
    Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
  • Patent number: 11198263
    Abstract: In an embodiment, a thermoplastic composite comprises a thermoplastic polymer; and a dielectric filler having a multimodal particle size distribution; wherein a peak of a first mode of the multimodal particle size distribution is at least seven times that of a peak of a second mode of the multimodal particle size distribution; and a flow modifier.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 14, 2021
    Assignee: ROGERS CORPORATION
    Inventors: Stephen O'Connor, Murali Sethumadhavan
  • Patent number: 11004583
    Abstract: In an embodiment, a magneto-dielectric material comprises a polymer matrix; a plurality of hexaferrite microfibers; wherein the magneto-dielectric material has a permeability of 2.5 to 7, or 2.5 to 5 in an x-direction parallel to a broad surface of the magneto-dielectric material and a magnetic loss tangent of less than or equal to 0.03; as determined at 1 GHz, or 1 to 2 GHz.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: May 11, 2021
    Assignee: ROGERS CORPORATION
    Inventors: Yajie Chen, Karl Edward Sprentall, Murali Sethumadhavan
  • Publication number: 20200377628
    Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
  • Publication number: 20200083602
    Abstract: An electromagnetic device includes: an electrically conductive ground structure; at least one dielectric resonator antenna (DRA) disposed on the ground structure; at least one electromagnetic (EM) beam shaper disposed proximate a corresponding one of the DRA; and, at least one signal feed disposed electromagnetically coupled to a corresponding one of the DRA. The at least one EM beam shaper having: an electrically conductive horn; a body of dielectric material having a dielectric constant that varies across the body of dielectric material in a specific direction; or, both the electrically conductive horn and the body of dielectric material.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 12, 2020
    Inventors: Murali Sethumadhavan, Michael S. White, Gianni Taraschi, Kristi Pance
  • Publication number: 20190341696
    Abstract: In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate.
    Type: Application
    Filed: April 29, 2019
    Publication date: November 7, 2019
    Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
  • Publication number: 20190291364
    Abstract: In an embodiment, a thermoplastic composite comprises a thermoplastic polymer; and a dielectric filler having a multimodal particle size distribution; wherein a peak of a first mode of the multimodal particle size distribution is at least seven times that of a peak of a second mode of the multimodal particle size distribution; and a flow modifier.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: Stephen O'Connor, Murali Sethumadhavan