Patents by Inventor Murali V. Chaparala

Murali V. Chaparala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12130141
    Abstract: A navigation system includes a star camera having a field of view. The star camera includes a sun shields that selectively block portions of the star camera's field of view, to prevent unwanted light, such as light from the sun or moon, reaching image sensors of the star cameras. Some sun shields include x-y stages or r-? stages to selectively position a light blocker to block the unwanted light. Some sun shields use positionable partially overlapping orthogonally polarized filters to block the unwanted light. Some sun shields use counter-wound spiral windows that are selectively rotated to block the unwanted light. Some sun shields a curved surface that defines a plurality of apertures fitted with individual mechanical or electronic shutters.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 29, 2024
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Benjamin F. Lane, Murali V. Chaparala, Charles F. Arant, Matthew T. Jamula
  • Patent number: 11131549
    Abstract: A navigation system includes a monocentric lens and one or more curved image sensor arrays disposed parallel and spaced apart from the lens to capture respective portions, not all, of the field of view of the lens.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 28, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Murali V. Chaparala, Charles Arant, Matthew T. Jamula
  • Patent number: 11125562
    Abstract: A navigation system includes a monocentric lens and one or more curved image sensor arrays disposed parallel and spaced apart from the lens to capture respective portions, not all, of the field of view of the lens.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: September 21, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Murali V. Chaparala, Charles Arant, Matthew T. Jamula
  • Publication number: 20210108922
    Abstract: A navigation system includes a star camera having a field of view. The star camera includes a sun shields that selectively block portions of the star camera's field of view, to prevent unwanted light, such as light from the sun or moon, reaching image sensors of the star cameras. Some sun shields include x-y stages or r-? stages to selectively position a light blocker to block the unwanted light. Some sun shields use positionable partially overlapping orthogonally polarized filters to block the unwanted light. Some sun shields use counter-wound spiral windows that are selectively rotated to block the unwanted light. Some sun shields a curved surface that defines a plurality of apertures fitted with individual mechanical or electronic shutters.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 15, 2021
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Benjamin F. Lane, Murali V. Chaparala, Charles F. Arant, Matthew T. Jamula
  • Publication number: 20190107846
    Abstract: A system for management and control of vehicles is disclosed. In one example, the system manages and controls air traffic of aerial vehicles such as unmanned aerial vehicles (UAVs). The vehicular system includes vehicles including sensors for gathering sensor data, and a distributed control system that controls and manages the vehicles using the sensor data.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Nilay K. Roy, Michael A. Ridge, Scott E. Lennox, Rami Mangoubi, Murali V. Chaparala
  • Publication number: 20190066845
    Abstract: A distributed analytics system for identification and determination of disease and/or injuries is implemented on mobile computing devices carried by the users and a distributed computer network communicating with the mobile computing devices.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventors: Nilay K. Roy, Michael A. Ridge, Scott E. Lennox, Rami Mangoubi, Murali V. Chaparala
  • Patent number: 9927510
    Abstract: A star tracker determines a location or orientation of an object, such as a space vehicle, by observing unpolarized light from one or more stars or other relatively bright navigational marks, without imaging optics, pixelated imaging sensors or associated pixel readout electronics. An angle of incidence of the light is determined by comparing signals from two or more differently polarized optical sensors. The star tracker may be fabricated on a thin substrate. Some embodiments have vertical profiles of essentially just their optical sensors. Some embodiments include micro-baffles to limit field of view of the optical sensors.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: March 27, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Erik L. Waldron, Juha-Pekka J. Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Mark Adrian Dawson, Benjamin F. Lane, Stephen P. Smith
  • Patent number: 9891305
    Abstract: A chip scale star tracker that couples starlight into a lightguide such that the angle of incidence partially determines the mode of propagation of the starlight in the lightguide. A baffle system integrated with the lightguide prevents propagation of light incident from a predetermined range of angles.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 13, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Publication number: 20170184401
    Abstract: A navigation system includes a monocentric lens and one or more curved image sensor arrays disposed parallel and spaced apart from the lens to capture respective portions, not all, of the field of view of the lens.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Murali V. Chaparala, Charles Arant, Matthew T. Jamula
  • Patent number: 9482553
    Abstract: Methods and apparatus for calibrating a gyroscope without rotating the instrument. In one example, a calibration method includes operating the gyroscope in a self-oscillation loop to generate x-axis and y-axis drive signals, adding forcing signals to the x-axis and y-axis drive signals to produce pick-off x-axis and y-axis signals, measuring the pick-off x-axis and y-axis signals to produce measurement data, determining a relative phase between the pick-off x-axis and y-axis signals, based on the measurement data and the relative phase, estimating parameters of the gyroscope, based on the measurement data and the estimated parameters, calculating estimated position signals to calibrate the gyroscope.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: November 1, 2016
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Marc S. Weinberg, Eugene H. Cook, Stephen L. Finberg, Murali V. Chaparala, Thayne R. Henry, Thomas A. Campbell
  • Publication number: 20160282441
    Abstract: A chip scale star tracker that couples starlight into a lightguide such that the angle of incidence partially determines the mode of propagation of the starlight in the lightguide. A baffle system integrated with the lightguide prevents propagation of light incident from a predetermined range of angles.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Patent number: 9372250
    Abstract: A chip scale star tracker that captures plane-wave starlight propagating in free space with a wafer-thin angle-sensitive broadband filter-aperture, and directs the light into a waveguide structure for readout. Angular information about the star source is determined from characteristics of the starlight propagating in the waveguide. Certain examples include internal propagation-constant-based baffling to elimination stray light from extreme angles.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: June 21, 2016
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Publication number: 20160091339
    Abstract: Methods and apparatus for calibrating a gyroscope without rotating the instrument. In one example, a calibration method includes operating the gyroscope in a self-oscillation loop to generate x-axis and y-axis drive signals, adding forcing signals to the x-axis and y-axis drive signals to produce pick-off x-axis and y-axis signals, measuring the pick-off x-axis and y-axis signals to produce measurement data, determining a relative phase between the pick-off x-axis and y-axis signals, based on the measurement data and the relative phase, estimating parameters of the gyroscope, based on the measurement data and the estimated parameters, calculating estimated position signals to calibrate the gyroscope.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: Marc S. Weinberg, Eugene H. Cook, Stephen L. Finberg, Murali V. Chaparala, Thayne R. Henry, Thomas A. Campbell
  • Publication number: 20160041265
    Abstract: A star tracker determines a location or orientation of an object, such as a space vehicle, by observing unpolarized light from one or more stars or other relatively bright navigational marks, without imaging optics, pixelated imaging sensors or associated pixel readout electronics. An angle of incidence of the light is determined by comparing signals from two or more differently polarized optical sensors. The star tracker may be fabricated on a thin substrate. Some embodiments have vertical profiles of essentially just their optical sensors. Some embodiments include micro-baffles to limit field of view of the optical sensors.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Inventors: Erik L. Waldron, Juha-Pekka J. Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Mark Adrian Dawson, Benjamin F. Lane, Stephen P. Smith
  • Publication number: 20150226830
    Abstract: A chip scale star tracker that captures plane-wave starlight propagating in free space with a wafer-thin angle-sensitive broadband filter-aperture, and directs the light into a waveguide structure for readout. Angular information about the star source is determined from characteristics of the starlight propagating in the waveguide. Certain examples include internal propagation-constant-based baffling to elimination stray light from extreme angles.
    Type: Application
    Filed: April 22, 2015
    Publication date: August 13, 2015
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Publication number: 20150124103
    Abstract: A navigation system includes a monocentric lens and one or more curved image sensor arrays disposed parallel and spaced apart from the lens to capture respective portions, not all, of the field of view of the lens.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 7, 2015
    Inventors: Robin Mark Adrian Dawson, Juha-Pekka J. Laine, Murali V. Chaparala, Charles Arant, Matthew T. Jamula
  • Patent number: 9019509
    Abstract: A chip scale star tracker that captures plane-wave starlight propagating in free space with a wafer-thin angle-sensitive broadband filter-aperture, and directs the light into a waveguide structure for readout. Angular information about the star source is determined from characteristics of the starlight propagating in the waveguide. Certain examples include internal propagation-constant-based baffling to elimination stray light from extreme angles.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 28, 2015
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Publication number: 20150002854
    Abstract: A chip scale star tracker that captures plane-wave starlight propagating in free space with a wafer-thin angle-sensitive broadband filter-aperture, and directs the light into a waveguide structure for readout. Angular information about the star source is determined from characteristics of the starlight propagating in the waveguide. Certain examples include internal propagation-constant-based baffling to elimination stray light from extreme angles.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Juha-Pekka Laine, Gregory P. Blasche, Murali V. Chaparala, Robin Dawson, Benjamin Lane, Stephen P. Smith, Erik Waldron
  • Patent number: 6237399
    Abstract: A cantilever structure is provided having a cantilever arm with a piezo-active detector embedded on the surface at the fixed end of the cantilever as well as at a sensing point close to the free end along with an integrated amplification circuitry. Deflection of the cantilever arm is initiated by two different methods: (a) by a force at the free end which induces a surface strain at the base of the cantilever and no strain at the free end and (b) by a torque at the free end which induces a maximum strain at the free end but no strain at the base of the cantilever. In the first case a piezo-active signal is produced only in the detector at the base and in the second case only in the detector close to the free end.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: May 29, 2001
    Inventors: Bellave S. Shivaram, Murali V. Chaparala, Stephen H. Jones