Patents by Inventor Murari M. Saha

Murari M. Saha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6397156
    Abstract: An accurate impedance measurement method for a power system transmission line is disclosed for improving various protection functions, i.e., distance protection and/or fault location estimation. The method is less sensitive to harmonics and other transient problems introduced to power systems by series capacitance and the like, and is easily incorporated into existing protective relays. In the method, a number (n) of current and voltage samples (Ik, Vk) representative of values of current and voltage waveforms are measured, respectively, at successive instants of time on a conductor in a power system. The number n is an integer greater than I and the index k takes on values of 1 to n. Resistance (R) and inductance (L) values are computed in accordance with an equation in which R and L are related to sums of differences in values of successive current and voltage samples. A prescribed power system function is then performed based on the computed R and L values.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: May 28, 2002
    Assignee: ABB Inc.
    Inventors: Bernhard Bachmann, David G. Hart, Yi Hu, Damir Novosel, Murari M. Saha
  • Patent number: 6336059
    Abstract: A reach-measurement method is used in connection with a series-compensated line of a power system. The series-compensated line includes an installed series capacitance having a bus side and a line side, and a non-linear protection device parallel to the installed series capacitance. The series-compensated line has a line current, a bus side voltage, and a line side voltage. The series capacitance and the non-linear protection device have a capacitance voltage thereacross equal to the bus side voltage minus the line side voltage. In the method, a number (n) of line current samples are measured, where such samples are representative of values of a line current waveform at successive instants of time on the series-compensated line. Capacitance voltage values are computed based on the measured line current samples in accordance with an equation which takes into account the non-linear protection device parallel to the installed series capacitance.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: January 1, 2002
    Assignee: ABB Power T&D Company Inc.
    Inventors: Damir Novosel, Bernhard Bachmann, Yi Hu, David G. Hart, Murari M. Saha
  • Patent number: 6249719
    Abstract: A Voltage Instability Predictor (VIP) estimates the proximity of a power system to voltage collapse in real time. The VIP can be implemented in a microprocessor-based relay whose settings are changed adaptively to reflect system changes. Only local measurements (voltage and current) at the bus terminal are required. The VIP detects the proximity to collapse by monitoring the relationship between the apparent impedance {overscore (Z)}app and the Thévenin-impedance. In addition, we disclose: (1) that the VIP may be used in connection with non-radial topologies; (2) a new, more robust method to track voltage collapse in terms of impedance using rolling sums; and (3) a new method for representing distance to voltage collapse in terms of power margins.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: June 19, 2001
    Assignee: ABB Power T&D Company, Inc.
    Inventors: Khoi Tien Vu, Danny E. Julian, Jan Ove Gjerde, Murari M. Saha
  • Patent number: 5956220
    Abstract: An adaptive distance relaying system provides improved performance for parallel circuit distance protection. The system utilizes the parallel circuit's current, when available, in conjunction with measurements of voltage and current on the protected line to compensate for the zero sequence current mutual coupling effect. The sequence current ratio (zero or negative sequence) is used to avoid incorrect compensation for relays on the healthy circuit. If the parallel circuit current is not available and the line operating status is, the best zero sequence current compensation factors are selected accordingly as a next level adaptation. If both the parallel circuit current and line operating status are unavailable, a fallback scheme that offers better results than classical distance protection schemes is employed.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: September 21, 1999
    Assignees: ABB Power T&D Company Inc., ABB Network Partner AB
    Inventors: Damir Novosel, Yi Hu, Murari M. Saha
  • Patent number: 5493228
    Abstract: A method and a device, after a fault has occurred in a power network, for measuring and recreating the phase currents I.sub.B prior to the occurrence of the fault by determining continuously, starting from sampled measured values of the phase currents up to the time of the fault for each phase, the amplitude I and the phase angle .phi. of the phase currents based on two consecutive sampled measured values, whereupon a comparison is made between the last determined value I.sub.k obtained and the rated current I.sub.n of the power network. If I.sub.k is greater than I.sub.n, it is considered that a fault has occurred and the phase currents prior to the fault are indicated as I.sub.B =I.sub.k-1 .multidot.sin (.phi..sub.k-1 +.omega.(t-t.sub.k-1)).
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: February 20, 1996
    Assignee: ASEA Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha
  • Patent number: 5446387
    Abstract: A method and a device for determining the distance from a measuring station to a fault on a transmission line based on a fault model of a transmission network while taking into consideration the zero-sequence impedance and, where assuming a fault current, while taking into consideration the feeding of fault current to the fault point from both ends of the transmission line (FIG. 3 ).
    Type: Grant
    Filed: September 21, 1993
    Date of Patent: August 29, 1995
    Assignee: Asea Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha
  • Patent number: 5399974
    Abstract: A method and a device for determining the fault current which occurs in case of a fault through a short circuit between phases or from phase/phases to ground. A measure of the fault current can be obtained by a linear combination of the sum of measured current samples for each phase at two adjacent points in time and in which each of these sample values is multiplied by a coefficient which is chosen such that the fault current gets into phase with the positive- and negative-sequence current changes.
    Type: Grant
    Filed: June 14, 1993
    Date of Patent: March 21, 1995
    Assignee: Asea Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha
  • Patent number: 5390067
    Abstract: A method and a device for phase selection for single-pole tripping of high-impedance ground faults in direct grounded power networks. Starting from the ratio of the negative-sequence voltage to the zero-sequence current (U2/I0) and the ratio of the negative-sequence voltage to the positive-sequence voltage (U2/U1), two criteria with different conditions are formed, each of which indicating a faulted phase, and if both criteria indicate the same phase as faulted, single-pole tripping can take place.
    Type: Grant
    Filed: February 23, 1993
    Date of Patent: February 14, 1995
    Assignee: ASEA Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha, Kjell Svensson
  • Patent number: 5375026
    Abstract: A method and a device for preventing overstabilization of longitudinal differential protections in case of internal faults on power lines, which may take place when a fault situation, which is indicated as an external faults, is in reality an internal fault. The invention comprises criteria which finally provide information as to whether the longitudinal differential protection is to enter into operation. The criteria comprise level and directional determination of the currents which are measured in the terminals of the power lines, checking whether these have the same direction, and so on.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: December 20, 1994
    Assignee: Asea Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha
  • Patent number: 5367425
    Abstract: A method and a device for preventing understabilization of longitudinal differential protections in case of external faults and current transformer saturation. The invention comprises an extension of the state of the art with regard to stabilization of longitudinal differential protections in such a way that the values (A1, A2, . . . An), (.phi.1, .phi.2, . . . .phi.n), obtained via current measurement (C1, C2, . . . Cn) and Fourier filters (4, 5, 6), for determining the function characteristic of the protection under certain conditions as regards current amplitude and current transformer saturation are given corrected values (A1k, A2k, . . . Ank), (.phi.1k, .phi.2k, . . . .phi.nk) (FIG. 2).
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: November 22, 1994
    Assignee: Asea Brown Boveri AB
    Inventors: Murari M. Saha, Per Wennerlund
  • Patent number: 5352983
    Abstract: The invention relates to a method and a device for detecting a flashover between conductors in power transmission lines of different voltage levels suspended from the same towers and wherein the power lines are included in a power network where one of the power lines is stated to be a high-voltage power line (1) and where the other power lines are connected to the high-voltage line via transformers of a known transformer ratio (am) and internal impedance (ZXm) and wherein the line impedances (ZL) are known. Specific to the invention is that the fault current which is caused by a flashover is set to be equal to a detected current change in any of the phases in the high-voltage line. With this assumption an equation system can be set up with the aid of which the relative distance to fault n (0<n<1) can be determined. If the produced value of n lies within the stated region, this is interpreted as if an internal flashover has occurred.
    Type: Grant
    Filed: December 1, 1992
    Date of Patent: October 4, 1994
    Assignee: Asea Brown Boveri AB
    Inventors: Leif Eriksson, Murari M. Saha
  • Patent number: 4731689
    Abstract: A method and a device for directional detection of a fault on a power transmission line extending between two stations (P, Q). In one of the stations (P) there is a travelling wave model which, by means of currents and voltages measured in the station, calculates the voltage distirbution along the line. The direction to a fault is determined by monitoring changes in calculated voltages in the two stations. If a fault occurs between the stations, the voltage change occurring in a station (Q) between the voltage existing prior to a fault and after a fault can be estimated as .vertline..DELTA.Uq.vertline., and the corresponding voltage change occurring in the other station (P) can be estimated as .vertline..DELTA.Up.vertline., whereby according to the invention the difference .vertline..DELTA.Uq.vertline.-.vertline..DELTA.Up.vertline.>0 signifies a fault on the line side of the station (P), i.e. a fault lying ahead of the measuring point. A fault lying behind station P is evidenced when .vertline..DELTA.Uq.
    Type: Grant
    Filed: March 27, 1987
    Date of Patent: March 15, 1988
    Assignee: ASEA AB
    Inventors: Gunnar Nimmersjo, Murari M. Saha
  • Patent number: 4731688
    Abstract: A method and device for range limitation and direct tripping for protection in the event of a fault on an electrical power line extending between two stations (P, Q) involves employing a travelling wave model in one of the stations (P) which, with the aid of measured currents and voltages in that station, to calculate the voltage distribution at a number of control points along the line. The range of the protection device is indicated as the distance between the measuring station and that control point for which a voltage difference (.delta.u) becomes equal to zero. The voltage difference consists of the difference between the absolute value of a voltage differene between the absolute value of a voltage difference (.DELTA.u), formed as the sum of a voltage value (U") calculated with the travelling wave model for the control point at a certain time, and the corresponding voltage value (U') one half-period earlier and the absolute value of the latter voltage value.
    Type: Grant
    Filed: March 27, 1987
    Date of Patent: March 15, 1988
    Assignee: Asea AB
    Inventors: Gunnar Nimmersjo, Murari M. Saha
  • Patent number: 4559491
    Abstract: A fault point in a line section of a three-phase power transmission line, is determined by measuring currents and voltages at a measuring point arranged adjacent the near end of the section. The type of fault (single-phase/multi-phase ground fault/phase-to-phase fault) is determined and the parameters in a quadratic equation are determined using the relative distance (n) from the measuring point to the fault point as a variable. The equation is derived in advance from the electrical relationships between the complex values of the line impedance, the source impedances of the networks located ahead of and behind the fault, and measured currents and voltages following elimination of the fault resistance and possible zero sequence components. The parameters in the equation are determined by the type of the fault, by the measured voltages and currents and by said impedances. The equation is solved directly by means of a numerical square root method.
    Type: Grant
    Filed: August 31, 1983
    Date of Patent: December 17, 1985
    Assignee: ASEA Aktiebolag
    Inventor: Murari M. Saha