Patents by Inventor Muriel Y. Ishikawa

Muriel Y. Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200316365
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Application
    Filed: February 10, 2020
    Publication date: October 8, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20200310376
    Abstract: In one embodiment, a particular state of a body is sensed. In response to the sensing, at least one action is taken to modulate a projected adverse interaction between the body or a portion thereof and at least one object in the environment of the body. An apparatus, methods and computer program product, and system are described that enable a first subset of actuatable cushioning elements for a first time period, enable a second subset of actuatable cushioning elements for a second time period, determine an event, and actuate, based on a time the event is determined, at least one of the first and the second subsets of actuatable cushioning elements to provide cushioning support for an object. Other example embodiments are also provided relating to actuatable cushioning elements.
    Type: Application
    Filed: November 1, 2019
    Publication date: October 1, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Cameron Myhrvold, Conor L. Myhrvold, Nathan P. Myhrvold, John D. Rinaldo, JR., Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10786626
    Abstract: Methods, computer program products, and systems are described that include measuring at least one effect of a combined bioactive agent and artificial sensory experience on an individual and/or modifying at least one of the bioactive agent or the artificial sensory experience at least partially based on the at least one effect.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 29, 2020
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, Elizabeth A. Sweeney, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10783989
    Abstract: Embodiments disclosed herein relate to methods, devices, and computer systems thereof for automated data collection from a subject. In certain embodiments, one or more characteristics of a subject are sensed, and the subject is given a queue status indicator based on a comparison of the subject's one or more sensed characteristics with corresponding sensed characteristics from other subjects. In one embodiment, the subject is a healthcare worker and the system, methods, and devices are utilized to evaluate the overall health of the worker as part of the check-in process for work.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: September 22, 2020
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, Michael H. Baym, Philip A. Welkhoff, Roderick A. Hyde, Muriel Y. Ishikawa, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 10758673
    Abstract: Embodiments disclosed herein are directed to systems and methods of dispensing one or more medicaments to a subject. The systems and methods utilize at least one flexible compression garment having one or more medicament dispensers therein.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: September 1, 2020
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10733396
    Abstract: According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 4, 2020
    Assignee: Elwha LLC
    Inventors: Daniel A. Gerrity, William Gates, Pablos Holman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, Nathan P. Myhrvold, John D. Rinaldo, Jr., Keith D. Rosema, Clarence T. Tegreene, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 10716727
    Abstract: Embodiments disclosed herein relate to a garment system including at least one muscle or at least one joint activity sensor, and at least one actuator that operates responsive to sensing feedback from the at least one muscle or the at least one joint activity sensor to cause a flexible compression garment to selectively compress against or selectively relieve compression against at least one body part of a subject. Embodiments disclosed herein also relate to methods of using such garment systems.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: July 21, 2020
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20200214566
    Abstract: Systems and methods are described for configuring and using displays, speakers, or other output devices positioned by an article of clothing or other such structure wearable by a healthcare recipient, for example, in a clinic or residential care facility.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: Paul G. Allen, Edward S. Boyden, Mahalaxmi Gita Bangera, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Eric C. Leuthardt, Dennis J. Rivet, Michael A. Smith, Elizabeth A. Sweeney, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10706979
    Abstract: Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, controlling a propagating nuclear deflagration wave within a burning wavefront heat generating region, moveable neutron modifying structures, variable burn-up, programmable nuclear thermostats, fast flux irradiation, temperature-driven surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 7, 2020
    Assignee: TERRAPOWER, LLC.
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Nathan P. Myhrvold, Lowell L. Wood, Jr.
  • Patent number: 10683365
    Abstract: Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 16, 2020
    Assignee: DEEP SCIENCE, LLC
    Inventors: Mahalaxmi Gita Bangera, Ed Harlow, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Eric C. Leuthardt, Nathan P. Myhrvold, Dennis J. Rivet, Elizabeth A. Sweeney, Clarence T. Tegreene, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20200176140
    Abstract: A method, system, and apparatus for the thermal storage of nuclear reactor generated energy including diverting a selected portion of energy from a portion of a nuclear reactor system to an auxiliary thermal reservoir and, responsive to a shutdown event, supplying a portion of the diverted selected portion of energy to an energy conversion system of the nuclear reactor system.
    Type: Application
    Filed: January 13, 2020
    Publication date: June 4, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Clarence T. Tegreene, Joshua C. Walter, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10671168
    Abstract: Described embodiments include a system and a method. A system includes a first ultrasound transmitter acoustically coupled to a conducting layer of a display surface and configured to deliver a first ultrasound wave to a selected delineated area. The first ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A second ultrasound transmitter is acoustically coupled to the conducting layer and configured to deliver a second ultrasound wave to the selected delineated area. The second ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A controller selects a delineated area in response to an indication of a touch to the display surface, and initiates delivery of the first and second ultrasonic waves. A convergence of the first and second ultrasonic waves at the selected delineated area produces a stress pattern perceivable or discernible by the human appendage.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10668356
    Abstract: Embodiments disclosed herein are directed to protective garments and systems that include a protective garment for protecting one or more body regions of an individual wearing the protective garment.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 2, 2020
    Assignee: ELWHA LLC
    Inventors: Mahalaxmi Gita Bangera, Jesse R. Cheatham, III, Hon Wah Chin, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Elizabeth A. Sweeney
  • Patent number: 10668305
    Abstract: Garment systems including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Methods of using such garment systems are also described.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 2, 2020
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10665332
    Abstract: A method for facilitating physiological data acquisition includes scheduling a medical appointment between a patient and a medical provider. The medical appointment is to be conducted at a medical provider location on an appointment date. The method also includes selecting a medical device configured to acquire physiological data regarding the patient. The method further includes sending, to a fulfillment system, a request to provide the medical device to a patient location prior to the appointment date. The patient location is remote from the medical provider location.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 26, 2020
    Assignee: ELWHA LLC
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David L. Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10629338
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a magnetic substrate at least partially covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The apparatus includes a plasmonic nanoparticle having a magnetic element at least partially covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The apparatus includes a dielectric-filled gap between the first plasmonic outer surface and the second outer surface. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to support one or more mutually coupled plasmonic excitations.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: April 21, 2020
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10609270
    Abstract: Computationally implemented methods and systems include acquiring a request for particular image data that is part of a scene, transmitting the request for the particular image data to an image sensor array that includes more than one image sensor and that is configured to capture the scene that is larger than the requested particular image data, receiving only the particular image data from the image sensor array, and transmitting the received particular image data to at least one requestor. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: March 31, 2020
    Assignee: The Invention Science Fund II, LLC
    Inventors: Ehren Brav, Russell Hannigan, Roderick A. Hyde, Muriel Y Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S Pan, Phillip Rutschman, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10596365
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: March 24, 2020
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10589105
    Abstract: Systems and related methods for controlling delivery of a stimulus to a pinna of a subject with a stimulator worn on the pinna are described. A wearable stimulation device includes a mechanical, electrical, or other type of stimulator secured to a pinna of a subject. A personal computing device in communication with the wearable stimulation device controls delivery of stimuli and other aspects of operation of the device. In some aspects recommendations regarding neural stimuli and other stimuli or experiences to be delivered in association with the neural stimuli are provided via a computing system in communication with the personal computing device or the wearable stimulation device.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: March 17, 2020
    Assignee: The Invention Science Fund II, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Stephen L. Malaska, Nathan P. Myhrvold, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10575476
    Abstract: Provided is a reflective article including a first reflecting material and a second retro reflecting material; where sunlight that is photosynthetically active is at least partially reflected by the article and sunlight that is not photosynthetically active is at least partially retro reflected by the article. Also provided is a method for growing a plant, where the method includes placing the reflective article under, around, or in the proximity of the plant.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 3, 2020
    Assignee: Elwha LLC
    Inventors: William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Lowell L. Wood, Jr.