Patents by Inventor Murthy V. Simhambhatla

Murthy V. Simhambhatla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8521259
    Abstract: A method including positioning a catheter at a location in a blood vessel; imaging a thickness of a portion of a wall of the blood vessel at the location; identifying a treatment site; advancing a needle a distance into the wall of the blood vessel to the treatment site; and introducing a treatment agent through the needle to the treatment site. A composition including an inflammation-inducing agent and a carrier in the form of microspheres having a particle size suitable for transvascular delivery. A composition including a therapeutic angiogenesis promoter in a carrier and an opsonin-inhibitor coupled to the carrier. An apparatus for delivery of a therapeutic angiogenesis promoter.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: August 27, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Evgenia Mandrusov, Murthy V. Simhambhatla, Syed Hossainy, Eugene T. Michal, Charles Claude, Jessica G. Chiu
  • Patent number: 8034361
    Abstract: Coatings for implantable medical devices including nanoparticles incorporating an active agent, and methods for fabricating the coatings.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 11, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Syed F. A. Hossainy, Murthy V. Simhambhatla
  • Patent number: 8021678
    Abstract: The present invention relates to an implantable medical device comprising therapeutic agents coated on the device using polyesters for the drug reservoir layer that exhibit surface-eroding characteristics.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: September 20, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Syed Faiyaz Ahmed Hossainy, Stephen D. Pacetti, Murthy V. Simhambhatla
  • Patent number: 7794743
    Abstract: Polycationic peptide coatings for implantable medical devices and methods of making the same are described. The methods include applying an emulsion on the device, the emulsion including a polymer and a polycationic peptide. Other methods include incorporation of the polycationic peptide in microspheres and liposomes.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: September 14, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Murthy V. Simhambhatla, Ni Ding, Stephen D. Pacetti
  • Publication number: 20090326574
    Abstract: A method of treating vulnerable plaque comprising intentionally damaging or rupturing the vulnerable plaque using a wingless balloon which is inflated from a wingless unexpanded diameter to a limited expanded diameter. This process produces significant increase in ECM synthesis at the site of the damage or rupture. As a result, the method strengthens the vulnerable plaque while minimizing or avoiding damage to the surrounding wall of the body lumen or damaging a stable plaque mistakenly believed to be a vulnerable plaque. The method of the invention is particularly useful in treating a fibroatheroma type of vulnerable plaque. In one embodiment, the balloon is self-limiting such that it expands compliantly at initial inflation pressures, and above nominal pressure it expands noncompliantly. In an alternative embodiment, the balloon is inflated using a diameter-limiting device, such as a device which limits the inflation pressure or the volume of inflation fluid in the balloon.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 31, 2009
    Inventors: Deborah L. Kilpatrick, Robert D. Ainsworth, Murthy V. Simhambhatla, Jeong S. Lee
  • Patent number: 7553292
    Abstract: A method of treating vulnerable plaque comprising intentionally damaging or rupturing the vulnerable plaque using a wingless balloon which is inflated from a wingless unexpanded diameter to a limited expanded diameter. This process produces significant increase in ECM synthesis at the site of the damage or rupture. As a result, the method strengthens the vulnerable plaque while minimizing or avoiding damage to the surrounding wall of the body lumen or damaging a stable plaque mistakenly believed to be a vulnerable plaque. The method of the invention is particularly useful in treating a fibroatheroma type of vulnerable plaque. In one embodiment, the balloon is self-limiting such that it expands compliantly at initial inflation pressures, and above nominal pressure it expands noncompliantly. In an alternative embodiment, the balloon is inflated using a diameter-limiting device, such as a device which limits the inflation pressure or the volume of inflation fluid in the balloon.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: June 30, 2009
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Deborah L. Kilpatrick, Robert D. Ainsworth, Murthy V. Simhambhatla, Jeong S. Lee
  • Patent number: 7011842
    Abstract: Polycationic peptide coatings for implantable medical devices and methods of making the same are described. The methods include applying an emulsion on the device, the emulsion including a polymer and a polycationic peptide. Other methods include incorporation of the polycationic peptide in microspheres and liposomes.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: March 14, 2006
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Murthy V Simhambhatla, Ni Ding, Stephen D. Pacetti
  • Patent number: 6972024
    Abstract: A method of treating vulnerable plaque comprising intentionally damaging or rupturing the vulnerable plaque using a wingless balloon which is inflated from a wingless unexpanded diameter to a limited expanded diameter. This process produces significant increase in ECM synthesis at the site of the damage or rupture. As a result, the method strengthens the vulnerable plaque while minimizing or avoiding damage to the surrounding wall of the body lumen or damaging a stable plaque mistakenly believed to be a vulnerable plaque. The method of the invention is particularly useful in treating a fibroatheroma type of vulnerable plaque. In one embodiment, the balloon is self-limiting such that it expands compliantly at initial inflation pressures, and above nominal pressure it expands noncompliantly. In an alternative embodiment, the balloon is inflated using a diameter-limiting device, such as a device which limits the inflation pressure or the volume of inflation fluid in the balloon.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 6, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Deborah L. Kilpatrick, Robert D. Ainsworth, Murthy V. Simhambhatla, Jeong S. Lee
  • Patent number: 6890395
    Abstract: Medical devices having at least a component, such as a catheter balloon, stent cover and vascular graft, formed of ultrahigh molecular weight polyolefin, such as ultrahigh molecular weight polyethylene. The device component is formed from ultrahigh molecular weight polyethylene that has been processed so that it is microporous and has an oriented node and fibril structure. The device component expands compliantly at low strains and are substantially less compliant at higher strains. The invention also comprises methods for making such medical devices, including the steps of compacting a polyethylene powder and deforming it to impart the oriented structure.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: May 10, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Murthy V. Simhambhatla
  • Patent number: 6875197
    Abstract: A dimensionally stable and growth controlled inflatable member formed by adding a multifunctional agent to a soft polymer to form a compound, extruding an inflatable member from the compound, and crosslinking the compound. The inflatable member is configured to be formed-in-place with a body lumen. Preferably, the inflatable member is blown to a working diameter prior to use and then heated to the glass transition temperature of the polymer to shrink the diameter of the blown inflatable member back to about the nominal diameter of the tubing. In another embodiment, the invention is a dimensionally stable and growth controlled inflatable member comprising longitudinal zones of crosslinked material symmetrically spaced about the circumference of the inflatable member and a uniform working diameter. Preferably, there are three or more longitudinal zones that run the working length of the inflatable member.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: April 5, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Murthy V. Simhambhatla, Robert P. Saltman
  • Patent number: 6780361
    Abstract: A method including forming a pseudo-gel of a semi-crystalline polymer material and a solvent. The pseudo-gel is shaped into a first form and stretched. A portion of the solvent is removed to create a second form. The second form is stretched into a microstructure including nodes interconnected by fibrils. A method including forming a first form of a pseudo-gel including an ultra-high molecular weight polyethylene material and a solvent; stretching the first form; removing the solvent to form a second form; stretching the second form into a microstructure including nodes interconnected by fibrils; and annealing the stretched second form. An apparatus including a body portion formed of a dimension suitable for a medical device application and including a polyolefin polymer including a node and a fibril microstructure. An apparatus including a body portion including an ultra-high molecular weight polyolefin material including a node and a fibril microstructure.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: August 24, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Srinivasan Sridharan, Murthy V. Simhambhatla
  • Publication number: 20040162516
    Abstract: A method including positioning a catheter at a location in a blood vessel; imaging a thickness of a portion of a wall of the blood vessel at the location; identifying a treatment site; advancing a needle a distance into the wall of the blood vessel to the treatment site; and introducing a treatment agent through the needle to the treatment site. A composition including an inflammation-inducing agent and a carrier in the form of microspheres having a particle size suitable for transvascular delivery. A composition including a therapeutic angiogenesis promoter in a carrier and an opsonin-inhibitor coupled to the carrier. An apparatus for delivery of a therapeutic angiogenesis promoter.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Inventors: Evgenia Mandrusov, Murthy V. Simhambhatla, Syed Hossainy, Eugene T. Michal, Charles Claude, Jessica G. Chiu
  • Patent number: 6761786
    Abstract: Medical devices such as catheter balloons, stent covers and vascular grafts formed of ultrahigh molecular weight polyethylene. The devices are formed from polyethylene that has been processed so that it is microporous and has an oriented node and fibril structure. The balloons expand compliantly at low strains and are substantially less compliant at higher strains. The invention also comprises methods for making such balloons, including the steps of compacting a polyethylene powder and deforming it to impart the oriented structure.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: July 13, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Murthy V. Simhambhatla, Robert D. Ainsworth, Robert P. Saltman
  • Patent number: 6743388
    Abstract: A method including forming a semi-crystalline polymer material into a lamella; and stretching the lamella into a polymer including a node of folded lamella and a fibril orientation. A method including extruding a pseudo-gel including an ultrahigh molecular weight polyethylene material into a lamella; stretching the lamella into a polymer including a node of folded lamella and a fibril orientation; and annealing the polymer at a temperature sufficient to define the node and fibril orientation. An apparatus including a body portion formed of a dimension suitable for a medical device application and including a semi-crystalline polymer arrayed in a node of folded lamella and a fibril orientation. An apparatus including a body portion including an ultra-high molecular polyethylene material arrayed in a node of folded lamella and a fibril orientation.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: June 1, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Srinivasan Sridharan, Murthy V. Simhambhatla
  • Patent number: 6702744
    Abstract: A method including positioning a catheter at a location in a blood vessel; imaging a thickness of a portion of a wall of the blood vessel at the location; identifying a treatment site; advancing a needle a distance into the wall of the blood vessel to the treatment site; and introducing a treatment agent through the needle to the treatment site. A composition including an inflammation-inducing agent and a carrier in the form of microspheres having a particle size suitable for transvascular delivery. A composition including a therapeutic angiogenesis promoter in a carrier and an opsonin-inhibitor coupled to the carrier. An apparatus for delivery of a therapeutic angiogenesis promoter.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: March 9, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Evgenia Mandrusov, Murthy V. Simhambhatla, Syed Hossainy, Eugene T. Michal, Charles Claude, Jessica G. Chiu
  • Publication number: 20040002650
    Abstract: A method including positioning a catheter at a location in a blood vessel; imaging a thickness of a portion of a wall of the blood vessel at the location; identifying a treatment site; advancing a needle a distance into the wall of the blood vessel to the treatment site; and introducing a treatment agent through the needle to the treatment site. A composition including an inflammation-inducing agent and a carrier in the form of microspheres having a particle size suitable for transvascular delivery. A composition including a therapeutic angiogenesis promoter in a carrier and an opsonin-inhibitor coupled to the carrier. An apparatus for delivery of a therapeutic angiogenesis promoter.
    Type: Application
    Filed: November 30, 2001
    Publication date: January 1, 2004
    Inventors: Evgenia Mandrusov, Murthy V. Simhambhatla, Syed Hossainy, Eugene T. Michal, Charles Claude, Jessica G. Chiu
  • Publication number: 20030194520
    Abstract: Medical devices having at least a component, such as a catheter balloon, stent cover and vascular graft, formed of ultrahigh molecular weight polyolefin, such as ultrahigh molecular weight polyethylene. The device component is formed from ultrahigh molecular weight polyethylene that has been processed so that it is microporous and has an oriented node and fibril structure. The device component expands compliantly at low strains and are substantially less compliant at higher strains. The invention also comprises methods for making such medical devices, including the steps of compacting a polyethylene powder and deforming it to impart the oriented structure.
    Type: Application
    Filed: May 15, 2003
    Publication date: October 16, 2003
    Inventor: Murthy V. Simhambhatla
  • Patent number: 6620128
    Abstract: A balloon for a balloon catheter and a method of manufacture The method entails providing a polymeric tubular member having an inner lumen and a longitudinal axis. An incompressible fluid is introduced into the inner lumen at a predetermined volumetric flow rate, expanding the polymeric tubular member to a desired outer diameter. The volumetric flow rate of fluid may be predetermined to not over-inflate the balloon. The balloon is blown slower because no initial pressure need be exceeded, so higher blow up ratios may be achieved without sacrificing any strength of the balloon. The balloons embodying features of the invention have thinner walls, yet maintain the same physical and mechanical properties of a thicker walled balloon manufactured in today's methods. Therefore, the process of the invention will lead to lower profile balloon catheters for balloon catheters with the same outer diameter balloon on them.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: September 16, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Murthy V. Simhambhatla
  • Patent number: 6602224
    Abstract: Medical devices having at least a component, such as a catheter balloon, stent cover and vascular graft, formed of ultrahigh molecular weight polyolefin, such as ultrahigh molecular weight polyethylene. The device component is formed from ultrahigh molecular weight polyethylene that has been processed so that it is microporous and has an oriented node and fibril structure. The device component expands compliantly at low strains and are substantially less compliant at higher strains. The invention also comprises methods for making such medical devices, including the steps of compacting a polyethylene powder and deforming it to impart the oriented structure.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: August 5, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Murthy V. Simhambhatla
  • Publication number: 20030124279
    Abstract: A method including forming a semi-crystalline polymer material into a lamella; and stretching the lamella into a polymer comprising a node of folded lamella and a fibril orientation. A method including extruding a pseudo-gel comprising an ultrahigh molecular weight polyethylene material into a lamella; stretching the lamella into a polymer comprising a node of folded lamella and a fibril orientation; and annealing the polymer at a temperature sufficient to define the node and fibril orientation. An apparatus including a body portion formed of a dimension suitable for a medical device application and comprising a semi-crystalline polymer arrayed in a node of folded lamella and a fibril orientation. An apparatus including a body portion comprising an ultra-high molecular weight polyethylene material arrayed in a node of folded lamella and a fibril orientation.
    Type: Application
    Filed: December 31, 2001
    Publication date: July 3, 2003
    Inventors: Srinivasan Sridharan, Murthy V. Simhambhatla