Patents by Inventor Musaed Al-Ghrami
Musaed Al-Ghrami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240417268Abstract: This disclosure relates to methods of forming a ZSM-5 zeolite, the method comprising calcining one or more clay mineral compositions to form metakaolin, wherein the one or more clay mineral compositions may comprise greater than or equal to 10 wt. % halloysite; forming a slurry by combining at least the metakaolin, ZSM-5 zeolite seeds, a basic compound, and a silica source; hydrothermally treating the slurry to form a hydrothermal product; and calcining the hydrothermal product to form a ZSM-5 zeolite. This disclosure also relates processes of cracking a hydrocarbon feed comprising contacting the hydrocarbon feed with steam in the presence of a cracking catalyst comprising the ZSM-5 zeolite in a reactor under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo one or more cracking reactions to produce a cracking effluent comprising light olefins, light aromatic compounds, or both.Type: ApplicationFiled: June 14, 2023Publication date: December 19, 2024Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum and MineralsInventors: Aaron Akah, Rabindran Jermy, Abdullah Aitani, Mohammed A.B. Siddiqui, Musaed Al-Ghrami
-
Publication number: 20180244591Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.Type: ApplicationFiled: May 1, 2018Publication date: August 30, 2018Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
-
Patent number: 10059642Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.Type: GrantFiled: May 1, 2018Date of Patent: August 28, 2018Assignee: Saudi Arabian Oil CompanyInventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
-
Patent number: 9981888Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.Type: GrantFiled: June 23, 2016Date of Patent: May 29, 2018Assignee: Saudi Arabian Oil CompanyInventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
-
Publication number: 20170369397Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.Type: ApplicationFiled: June 23, 2016Publication date: December 28, 2017Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
-
Patent number: 9403155Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in the form of a separate particle in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.Type: GrantFiled: February 7, 2013Date of Patent: August 2, 2016Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALInventors: Christopher F. Dean, Musaed Salem Musaed Al-Ghrami Al-Ghamdi, Khurshid K. Alam, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
-
Patent number: 9267429Abstract: An apparatus and process for reducing vehicle emissions by converting exhaust gases to hydrocarbon fuel. The apparatus and process supplement conventional emission control techniques to further reduce vehicle emissions of harmful substances. The apparatus includes a heat exchanger to extract thermal energy from exhaust gases of a combustion engine that powers propulsion of a vehicle, a membrane separator to separate water and carbon dioxide from the exhaust gases, and a catalytic reactor comprising a nano catalyst. The catalytic reactor receives the water and the carbon dioxide from the membrane separator, contains a reaction of the water and the carbon dioxide that produces hydrocarbon fuel and is facilitated by the nano catalyst, and uses the thermal energy from the heat exchanger to stimulate the reaction. The catalytic reactor is contained within a body of the heat exchanger to facilitate the transfer of thermal energy.Type: GrantFiled: September 15, 2014Date of Patent: February 23, 2016Assignee: Saudi Arabian Oil CompanyInventors: Hasan Imran, Muased Salem Musaed Al-Ghrami Al-Ghamdi, Aadesh Harale, Jean-Pierre R. Ballaguet, Aqil Jamal
-
Publication number: 20150000615Abstract: An apparatus and process for reducing vehicle emissions by converting exhaust gases to hydrocarbon fuel. The apparatus and process supplement conventional emission control techniques to further reduce vehicle emissions of harmful substances. The apparatus includes a heat exchanger to extract thermal energy from exhaust gases of a combustion engine that powers propulsion of a vehicle, a membrane separator to separate water and carbon dioxide from the exhaust gases, and a catalytic reactor comprising a nano catalyst. The catalytic reactor receives the water and the carbon dioxide from the membrane separator, contains a reaction of the water and the carbon dioxide that produces hydrocarbon fuel and is facilitated by the nano catalyst, and uses the thermal energy from the heat exchanger to stimulate the reaction. The catalytic reactor is contained within a body of the heat exchanger to facilitate the transfer of thermal energy.Type: ApplicationFiled: September 15, 2014Publication date: January 1, 2015Inventors: Hasan Imran, Muased Salem Musaed Al-Ghrami Al-Ghamdi, Aadesh Harale, Jean-Pierre R. Ballaguet, Aqil Jamal
-
Patent number: 8863701Abstract: An apparatus and process for reducing vehicle emissions by converting exhaust gases to hydrocarbon fuel. The apparatus and process supplement conventional emission control techniques to further reduce vehicle emissions of harmful substances. The apparatus includes a heat exchanger to extract thermal energy from exhaust gases of a combustion engine that powers propulsion of a vehicle, a membrane separator to separate water and carbon dioxide from the exhaust gases, and a catalytic reactor comprising a nano catalyst. The catalytic reactor receives the water and the carbon dioxide from the membrane separator, contains a reaction of the water and the carbon dioxide that produces hydrocarbon fuel and is facilitated by the nano catalyst, and uses the thermal energy from the heat exchanger to stimulate the reaction. The catalytic reactor is contained within a body of the heat exchanger to facilitate the transfer of thermal energy.Type: GrantFiled: October 24, 2012Date of Patent: October 21, 2014Assignee: Saudi Arabian Oil CompanyInventors: Hassan Imran, Muased Salem Musaed Al-Ghrami Al-Ghamdi, Aadesh Harsale, Jean-Pierre R. Ballaguet, Aqil Jamal
-
Publication number: 20130210613Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in the form of a separate particle in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.Type: ApplicationFiled: February 7, 2013Publication date: August 15, 2013Applicants: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, Saudi Arabian Oil CompanyInventors: Christopher F. DEAN, Musaed Salem Musaed Al-Ghrami AL-GHAMDI, Khurshid K. ALAM, Mohammed Abdul Bari SIDDIQUI, Shakeel AHMED
-
Patent number: 8409428Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.Type: GrantFiled: June 28, 2006Date of Patent: April 2, 2013Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and MineralsInventors: Christopher F. Dean, Musaed Salem Musaed Al-Ghrami Al-Ghamdi, Khurshid K. Alam, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed