Patents by Inventor Musashi J. BRIEM

Musashi J. BRIEM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938472
    Abstract: The anion exchange membranes exhibit enhanced chemical stability and ion conductivity when compared with traditional styrene-based alkaline anion exchange membranes. A copolymer backbone is polymerized from a reaction medium that includes a diphenylalkylene and an alkadiene. The copolymer includes a plurality of pendant phenyl groups. The diphenyl groups on the polymer backbone are functionalized with one or more haloalkylated precursor substrates. The terminal halide from the precursor substrate can then be substituted with a desired ionic group. The diphenylethylene-based alkaline anion exchange membranes lack the ?-hydrogens sharing tertiary carbons with phenyl groups from polystyrene or styrene-based precursor polymers, resulting in higher chemical stability. The ionic groups are also apart from each other by about 3 to 6 carbons in the polymer backbone, enhancing ion conductivity. These membrane are advantageous for use in fuel cells, electrolyzers employing hydrogen, ion separations, etc.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: March 26, 2024
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Sangwoo Lee, Chulsung Bae, Musashi J. Briem, Sungmin Park
  • Publication number: 20220072529
    Abstract: The anion exchange membranes exhibit enhanced chemical stability and ion conductivity when compared with traditional styrene-based alkaline anion exchange membranes. A copolymer backbone is polymerized from a reaction medium that includes a diphenylalkylene and an alkadiene. The copolymer includes a plurality of pendant phenyl groups. The diphenyl groups on the polymer backbone are functionalized with one or more haloalkylated precursor substrates. The terminal halide from the precursor substrate can then be substituted with a desired ionic group. The diphenylethylene-based alkaline anion exchange membranes lack the ?-hydrogens sharing tertiary carbons with phenyl groups from polystyrene or styrene-based precursor polymers, resulting in higher chemical stability. The ionic groups are also apart from each other by about 3 to 6 carbons in the polymer backbone, enhancing ion conductivity. These membrane are advantageous for use in fuel cells, electrolyzers employing hydrogen, ion separations, etc.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 10, 2022
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Sangwoo LEE, Chulsung BAE, Musashi J. BRIEM, Sungmin PARK
  • Patent number: 11207672
    Abstract: The anion exchange membranes exhibit enhanced chemical stability and ion conductivity when compared with traditional styrene-based alkaline anion exchange membranes. A copolymer backbone is polymerized from a reaction medium that includes a diphenylalkylene and an alkadiene. The copolymer includes a plurality of pendant phenyl groups. The diphenyl groups on the polymer backbone are functionalized with one or more haloalkylated precursor substrates. The terminal halide from the precursor substrate can then be substituted with a desired ionic group. The diphenylethylene-based alkaline anion exchange membranes lack the ?-hydrogens sharing tertiary carbons with phenyl groups from polystyrene or styrene-based precursor polymers, resulting in higher chemical stability. The ionic groups are also apart from each other by about 3 to 6 carbons in the polymer backbone, enhancing ion conductivity. These membrane are advantageous for use in fuel cells, electrolyzers employing hydrogen, ion separations, etc.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: December 28, 2021
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Sangwoo Lee, Chulsung Bae, Musashi J. Briem, Sungmin Park
  • Publication number: 20210308663
    Abstract: The anion exchange membranes exhibit enhanced chemical stability and ion conductivity when compared with traditional styrene-based alkaline anion exchange membranes. A copolymer backbone is polymerized from a reaction medium that includes a diphenylalkylene and an alkadiene. The copolymer includes a plurality of pendant phenyl groups. The diphenyl groups on the polymer backbone are functionalized with one or more haloalkylated precursor substrates. The terminal halide from the precursor substrate can then be substituted with a desired ionic group. The diphenylethylene-based alkaline anion exchange membranes lack the ?-hydrogens sharing tertiary carbons with phenyl groups from polystyrene or styrene-based precursor polymers, resulting in higher chemical stability. The ionic groups are also apart from each other by about 3 to 6 carbons in the polymer backbone, enhancing ion conductivity. These membrane are advantageous for use in fuel cells, electrolyzers employing hydrogen, ion separations, etc.
    Type: Application
    Filed: October 22, 2019
    Publication date: October 7, 2021
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Sangwoo LEE, Chulsung BAE, Musashi J. BRIEM, Sungmin PARK