Patents by Inventor Mustafa Michael Pinarbasi

Mustafa Michael Pinarbasi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220165942
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic structure in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer a first and second precessional spin current ferromagnetic layer separated by a nonmagnetic precessional spin current insertion layer.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 26, 2022
    Inventors: Bartlomiej Adam KARDASZ, Mustafa Michael PINARBASI
  • Patent number: 11271149
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic structure in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer a first and second precessional spin current ferromagnetic layer separated by a nonmagnetic precessional spin current insertion layer.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: March 8, 2022
    Assignee: Integrated Silicon Solution, (Cayman) Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi
  • Patent number: 10777736
    Abstract: Described embodiments can be used in semiconductor manufacturing and employ materials with high and low polish rates to help determine a precise polish end point that is consistent throughout a wafer and that can cease polishing prior to damaging semiconductor elements. The height of the low polish rate material between the semiconductor elements is used as the polishing endpoint. Because the low polish rate material slows down the polishing process, it is easy to determine an end point and avoid damage to the semiconductor elements. An additional or alternative etch end point can be a thin layer of material that provides a very clear spectroscopy signal when it has been exposed, allowing the etch process to cease.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 15, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Michael Pinarbasi, Jacob Anthony Hernandez, Arindom Datta, Marcin Jan Gajek, Parshuram Balkrishna Zantye
  • Patent number: 10734574
    Abstract: A perpendicular synthetic antiferromagnetic (pSAF) structure and method of making such a structure is disclosed. The pSAF structure comprises a first high perpendicular Magnetic Anisotropy (PMA) multilayer and a second high PMA layer separated by a thin Ruthenium layer. Each PMA layer is comprised of a first cobalt layer and a second cobalt layer separated by a nickel/cobalt multilayer. After each of the first and second PMA layers and the Ruthenium exchange coupling layer are deposited, the resulting structure goes through a high temperature annealing step, which results in each of the first and second PMA layers having a perpendicular magnetic anisotropy.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 4, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi, Jacob Anthony Hernandez
  • Publication number: 20200220074
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic structure in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer a first and second precessional spin current ferromagnetic layer separated by a nonmagnetic precessional spin current insertion layer.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Applicant: Spin Memory, Inc.
    Inventors: Bartlomiej Adam KARDASZ, Mustafa Michael PINARBASI
  • Patent number: 10672976
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic layer in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer is constructed with a material having a face centered cubic crystal structure, such as permalloy.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 2, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Patent number: 10665777
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic structure in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer a first and second precessional spin current ferromagnetic layer separated by a nonmagnetic precessional spin current insertion layer.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 26, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi
  • Patent number: 10615335
    Abstract: A magnetoresistive random-access memory (MRAM) device is disclosed. The device described herein has a spin current injection capping layer between the free layer of a magnetic tunnel junction and the orthogonal polarizer layer. The spin current injection capping layer maximizes the spin torque through very efficient spin current injection from the polarizer. The spin current injection capping layer can be comprised of a layer of MgO and a layer of a ferromagnetic material.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: April 7, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi
  • Patent number: 10553787
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic layer in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: February 4, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Michael Pinarbasi, Michail Tzoufras, Bartlomiej Adam Kardasz
  • Publication number: 20200035914
    Abstract: A perpendicular synthetic antiferromagnetic (pSAF) structure and method of making such a structure is disclosed. The pSAF structure comprises a first high perpendicular Magnetic Anisotropy (PMA) multilayer and a second high PMA layer separated by a thin Ruthenium layer. Each PMA layer is comprised of a first cobalt layer and a second cobalt layer separated by a nickel/cobalt multilayer. After each of the first and second PMA layers and the Ruthenium exchange coupling layer are deposited, the resulting structure goes through a high temperature annealing step, which results in each of the first and second PMA layers having a perpendicular magnetic anisotropy.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Applicant: Spin Memory, Inc.
    Inventors: Bartlomiej Adam KARDASZ, Mustafa Michael PINARBASI, Jacob Anthony HERNANDEZ
  • Patent number: 10468588
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. A skyrmionic enhancement layer is provided adjacent to the precessional spin current magnetic layer. The skyrmionic enhancement layer helps to improve the response of the precessional spin current magnetic layer to applied spin polarized currents.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: November 5, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Patent number: 10468590
    Abstract: A perpendicular synthetic antiferromagnetic (pSAF) structure and method of making such a structure is disclosed. The pSAF structure can be a first high perpendicular Magnetic Anisotropy (PMA) multilayer and a second high PMA layer separated by a thin Ruthenium layer. Each PMA layer can be a first cobalt layer and a second cobalt layer separated by a nickel/cobalt multilayer. After each of the first and second PMA layers and the Ruthenium exchange coupling layer are deposited, the resulting structure goes through a high temperature annealing step, which results in each of the first and second PMA layers having a perpendicular magnetic anisotropy.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: November 5, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi, Jacob Anthony Hernandez
  • Publication number: 20190214548
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. A skyrmionic enhancement layer is provided adjacent to the precessional spin current magnetic layer. The skyrmionic enhancement layer helps to improve the response of the precessional spin current magnetic layer to applied spin polarized currents.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Publication number: 20190206466
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. A skyrmionic enhancement layer is provided adjacent to the free layer. The skyrmionic enhancement layer helps to initiate the switching of the free layer.
    Type: Application
    Filed: December 30, 2017
    Publication date: July 4, 2019
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Publication number: 20190207088
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. The precessional spin current magnetic layer has a non-uniform moment density, and may have a moment density at its center that is greater than a moment density at its perimeter. The device is designed to provide control over the injection of stray fields and the electronic coupling between the precessional spin current magnetic layer and the free layer. Switching speed, switching current, and thermal barrier height for the device can be adjusted. The decreased moment density at the perimeter of the precessional spin current layer helps to stabilize the free layer when the effective magnetic field of the precessional spin current layer is high.
    Type: Application
    Filed: December 30, 2017
    Publication date: July 4, 2019
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Patent number: 10339993
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. A skyrmionic enhancement layer is provided adjacent to the free layer. The skyrmionic enhancement layer helps to initiate the switching of the free layer.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: July 2, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Patent number: 10319900
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. The precessional spin current magnetic layer has a non-uniform moment density, and may have a moment density at its center that is greater than a moment density at its perimeter. The device is designed to provide control over the injection of stray fields and the electronic coupling between the precessional spin current magnetic layer and the free layer. Switching speed, switching current, and thermal barrier height for the device can be adjusted. The decreased moment density at the perimeter of the precessional spin current layer helps to stabilize the free layer when the effective magnetic field of the precessional spin current layer is high. Spin accumulation can be increased near the center of the precessional spin current layer, helping to switch the free layer.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: June 11, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Publication number: 20190109278
    Abstract: A magnetoresistive random-access memory (MRAM) device is disclosed. The device described herein has a spin current injection capping layer between the free layer of a magnetic tunnel junction and the orthogonal polarizer layer. The spin current injection capping layer maximizes the spin torque through very efficient spin current injection from the polarizer. The spin current injection capping layer can be comprised of a layer of MgO and a layer of a ferromagnetic material.
    Type: Application
    Filed: November 21, 2018
    Publication date: April 11, 2019
    Applicant: Spin Memory, Inc.
    Inventors: Bartlomiej Adam KARDASZ, Mustafa Michael PINARBASI
  • Patent number: 10236439
    Abstract: A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. The precessional spin current magnetic layer has a diameter that is different from a diameter of the free layer. The device is designed to provide control over the injection of stray fields and the electronic coupling between the precessional spin current magnetic layer and the free layer. Switching speed, switching current, and thermal barrier height for the device can be adjusted.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: March 19, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Manfred Ernst Schabes, Mustafa Michael Pinarbasi, Bartlomiej Adam Kardasz
  • Patent number: 10147872
    Abstract: A magnetoresistive random-access memory (MRAM) device is disclosed. The device described herein has a spin current injection capping layer between the free layer of a magnetic tunnel junction and the orthogonal polarizer layer. The spin current injection capping layer maximizes the spin torque through very efficient spin current injection from the polarizer. The spin current injection capping layer can be comprised of a layer of MgO and a layer of a ferromagnetic material.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: December 4, 2018
    Assignee: Spin Transfer Technologies, Inc.
    Inventors: Bartlomiej Adam Kardasz, Mustafa Michael Pinarbasi