Patents by Inventor Muthukumar Vairavan

Muthukumar Vairavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11784855
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, the equalized input signal to generate multiple samples of a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: October 10, 2023
    Assignee: Oracle International Corporation
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Publication number: 20230155867
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, the equalized input signal to generate multiple samples of a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Application
    Filed: January 13, 2023
    Publication date: May 18, 2023
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Patent number: 11558223
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, the equalized input signal to generate multiple samples of a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: January 17, 2023
    Assignee: Oracle International Corporation
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Publication number: 20220191071
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, the equalized input signal to generate multiple samples of a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Application
    Filed: January 25, 2022
    Publication date: June 16, 2022
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Patent number: 11240073
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, to generate multiple samples for a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: February 1, 2022
    Assignee: Oracle International Corporation
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Publication number: 20210135907
    Abstract: A data receiver circuit includes a summer circuit configured to receive an input signal that encodes multiple data symbols, and combine the input signal with a feedback signal to generate an equalized input signal, which is used to generate a clock signal. The data receiver circuit also includes multiple data slicer circuits that sample, using the clock signal and multiple voltage offsets, to generate multiple samples for a particular data symbol. A precursor compensation circuit included in the data receiver circuit may generate an output value for the particular data symbol using the multiple samples. The data receiver circuit also includes a post cursor compensation circuit that generates the feedback signal using at least one of the multiple samples and a value of a previously received sample.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: Xun Zhang, Chaitanya Palusa, Dawei Huang, Muthukumar Vairavan, Jianghui Su
  • Patent number: 10483952
    Abstract: A method and an apparatus for correcting baseline wander is disclosed. The method and apparatus may include receiving a serial data stream that encodes a plurality of data symbols, and determining an average magnitude of a first data value included in one or more data symbols of a subset of the plurality of data symbols, and an average magnitude of a second value included in the one of more data symbols of the subset of the plurality of data symbols. A common mode operating point of an equalizer circuit may be adjusted using the average magnitude of the first data value and the average magnitude of the second data value.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 19, 2019
    Assignee: Oracle International Corporation
    Inventors: Jianghui Su, Xun Zhang, Muthukumar Vairavan, Rajesh Kumar, Dawei Huang
  • Publication number: 20190341914
    Abstract: A method and an apparatus for correcting baseline wander is disclosed. The method and apparatus may include receiving a serial data stream that encodes a plurality of data symbols, and determining an average magnitude of a first data value included in one or more data symbols of a subset of the plurality of data symbols, and an average magnitude of a second value included in the one of more data symbols of the subset of the plurality of data symbols. A common mode operating point of an equalizer circuit may be adjusted using the average magnitude of the first data value and the average magnitude of the second data value.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 7, 2019
    Inventors: Jianghui Su, Xun Zhang, Muthukumar Vairavan, Rajesh Kumar, Dawei Huang
  • Patent number: 10142089
    Abstract: Embodiments include systems and methods for improving link performance and tracking capability of a baud-rate clock data recovery (CDR) system using transition pattern detection. For example, a multi-level signal is received via a data channel and converted to a pseudo-NRZ signal. CDR early/late voting can be derived from the converted (baud-rate) pseudo-NRZ signal and from error signals from the received PAM4 signal, and the voting can be implemented with different phase error detector (PED) functional approaches. Different approaches can yield different CDR performance characteristics and can tend to favor different PAM4 transition patterns. Embodiments can identify jittery patterns for a particular CDR implementation and can add features to the CDR to filter out those patterns from being used for CDR early/late voting.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: November 27, 2018
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Yuhan Yao, Xun Zhang, Dawei Huang, Jianghui Su, Muthukumar Vairavan, Chaitanya Palusa
  • Patent number: 10135643
    Abstract: An embodiment includes a first feedback tap, a second feedback tap, and a summation circuit. The summation circuit may include a first load and a second load coupled to each other at an internal circuit node, and coupled in series between a power supply node and an output node. The summation circuit may be configured to receive, via a serial communication link, an input signal indicative of a series of data symbols, and to generate an output voltage level on the output node based upon a current data symbol. The first feedback tap, coupled to the output node, may be configured to sink a first current from the output node based upon a first previously received data symbol. The second feedback tap, coupled to an intermediate circuit node, may be configured to sink a second current from the intermediate circuit node based upon a second previously received data symbol.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 20, 2018
    Assignee: Oracle International Corporation
    Inventors: Long Kong, Ranjan Vaish, Muthukumar Vairavan, Zuxu Qin
  • Publication number: 20180278405
    Abstract: Embodiments include systems and methods for improving link performance and tracking capability of a baud-rate clock data recovery (CDR) system using transition pattern detection. For example, a multi-level signal is received via a data channel and converted to a pseudo-NRZ signal. CDR early/late voting can be derived from the converted (baud-rate) pseudo-NRZ signal and from error signals from the received PAM4 signal, and the voting can be implemented with different phase error detector (PED) functional approaches. Different approaches can yield different CDR performance characteristics and can tend to favor different PAM4 transition patterns. Embodiments can identify jittery patterns for a particular CDR implementation and can add features to the CDR to filter out those patterns from being used for CDR early/late voting.
    Type: Application
    Filed: March 22, 2017
    Publication date: September 27, 2018
    Inventors: Yuhan Yao, Xun Zhang, Dawei Huang, Jianghui Su, Muthukumar Vairavan, Chaitanya Palusa
  • Patent number: 8229020
    Abstract: A data communications system and methods are disclosed. The system includes a transmitter for conveying a data signal filtered by a finite impulse response (FIR) filter to a receiver via a channel. The receiver equalizes the received data signal using a decision feedback equalizer (DFE) and the FIR. The receiver samples the data signal to determine an error signal and uses the error signal to adapt settings of a pre-cursor tap coefficient of the FIR, one or more post-cursor tap coefficients of the FIR, a phase of the recovered clock, and a coefficient of the DFE. To adapt the settings, the receiver determines the error signal based on an error sample taken from the data signal in a single clock cycle. To determine an error signal, the receiver samples the data signal at a phase estimated to correspond to a peak amplitude of a pulse response of the channel.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 24, 2012
    Assignee: Oracle America, Inc.
    Inventors: Dawei Huang, Muthukumar Vairavan, Dong Joon Yoon, Drew G. Doblar
  • Patent number: 8181058
    Abstract: A receiver circuit is described. In the receiver circuit, an analog-to-digital converter (ADC) generates first samples of a data signal based on a first clock signal, and a clock-data-recovery (CDR) error-detection circuit generates second samples of the data signal based on a second clock signal. In addition, the CDR error-detection circuit estimates intersymbol interference (ISI) at a current sample in the second samples from an adjacent, subsequent sample in the second samples. Based on the second samples and the estimated ISI, a CDR circuit generates the first clock signal and the second clock signal, which involves modifying the skews of either or both of these clock signals so that the current sample is associated with a zero crossing of a pulse response of a communication channel from which the data signal was received, thereby reducing or eliminating the ISI from the adjacent, subsequent sample.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 15, 2012
    Assignee: Oracle America, Inc.
    Inventors: Jianghui Su, Deqiang Song, Dawei Huang, Muthukumar Vairavan
  • Publication number: 20110167297
    Abstract: A receiver circuit is described. In the receiver circuit, an analog-to-digital converter (ADC) generates first samples of a data signal based on a first clock signal, and a clock-data-recovery (CDR) error-detection circuit generates second samples of the data signal based on a second clock signal. In addition, the CDR error-detection circuit estimates intersymbol interference (ISI) at a current sample in the second samples from an adjacent, subsequent sample in the second samples. Based on the second samples and the estimated ISI, a CDR circuit generates the first clock signal and the second clock signal, which involves modifying the skews of either or both of these clock signals so that the current sample is associated with a zero crossing of a pulse response of a communication channel from which the data signal was received, thereby reducing or eliminating the ISI from the adjacent, subsequent sample.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Jianghui Su, Deqiang Song, Dawei Huang, Muthukumar Vairavan
  • Publication number: 20100238993
    Abstract: A data communications system and methods are disclosed. The system includes a transmitter for conveying a data signal filtered by a finite impulse response (FIR) filter to a receiver via a channel. The receiver equalizes the received data signal using a decision feedback equalizer (DFE) and the FIR. The receiver samples the data signal to determine an error signal and uses the error signal to adapt settings of a pre-cursor tap coefficient of the FIR, one or more post-cursor tap coefficients of the FIR, a phase of the recovered clock, and a coefficient of the DFE. To adapt the settings, the receiver determines the error signal based on an error sample taken from the data signal in a single clock cycle. To determine an error signal, the receiver samples the data signal at a phase estimated to correspond to a peak amplitude of a pulse response of the channel.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Inventors: Dawei Huang, Muthukumar Vairavan, Dong Joon Yoon, Drew G. Doblar