Patents by Inventor Muthusamy Vembusubramanian

Muthusamy Vembusubramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965844
    Abstract: A method (and corresponding system) that characterizes a porous rock sample is provided, which involves subjecting the porous rock sample to an applied experimental pressure where a first fluid that saturates the porous rock sample is displaced by a second fluid, and subsequently applying an NMR pulse sequence to the rock sample, detecting resulting NMR signals, and generating and storing NMR data representative of the detected NMR signals. The application of experimental pressure and NMR measurements can be repeated over varying applied experimental pressure to obtain NMR data associated with varying applied experimental pressure values. The NMR data can be processed using inversion to obtain a probability distribution function of capillary pressure values as a function of NMR property values. The probability distribution function of capillary pressure values as a function of NMR property values can be processed to determine at least one parameter indicative of the porous rock sample.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: April 23, 2024
    Assignee: Schlumberger Technology Corporation
    Inventors: Yi-Qiao Song, Andre Souza, Muthusamy Vembusubramanian, Tuanfeng Zhang, Wenyue Xu
  • Publication number: 20220082517
    Abstract: A method (and corresponding system) that characterizes a porous rock sample is provided, which involves subjecting the porous rock sample to an applied experimental pressure where a first fluid that saturates the porous rock sample is displaced by a second fluid, and subsequently applying an NMR pulse sequence to the rock sample, detecting resulting NMR signals, and generating and storing NMR data representative of the detected NMR signals. The application of experimental pressure and NMR measurements can be repeated over varying applied experimental pressure to obtain NMR data associated with varying applied experimental pressure values. The NMR data can be processed using inversion to obtain a probability distribution function of capillary pressure values as a function of NMR property values. The probability distribution function of capillary pressure values as a function of NMR property values can be processed to determine at least one parameter indicative of the porous rock sample.
    Type: Application
    Filed: January 8, 2019
    Publication date: March 17, 2022
    Inventors: Yi-Qiao Song, Andre Souza, Muthusamy Vembusubramanian, Tuanfeng Zhang, Wenyue Xu
  • Patent number: 8276380
    Abstract: A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 2, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Terizhandur S. Ramakrishnan, Sandeep Verma, Wenlin Zhang, Philippe Lacour-Gayet, Muthusamy Vembusubramanian
  • Patent number: 8096354
    Abstract: Methods and related systems for use with a wireline tool system. A wireline cable designed to deploy a wireline tool into a wellbore from a surface. The wireline cable includes one or more conducting members for communication between the wireline tool and the surface. A plurality of sensing elements located on the wireline cable in a spaced apart fashion along a length of the wireline cable, wherein each sensing element is in communication with one or more adjacent sensing element.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 17, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Patent number: 7942202
    Abstract: Methods and related systems for use with a continuous fiber based system for use with well bore completions. Wherein a plurality of continuous fibers are deployable into a portion of a well bore completion, such that a fiber management module is adapted and positioned within the borehole to facilitate deployment of and communication with the plurality of continuous fibers. Further, the number of deployable continuous fibers of the continuous fiber based system can provide for sufficient redundancy to make at least a target measurement relating to the completion.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: May 17, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Patent number: 7926562
    Abstract: Methods and related systems are described for use with hydraulic fracturing and other oilfield applications. A tool body is positioned in a wellbore at a location near a subterranean rock formation being fractured. The tool body contains a plurality of deployable continuous fibers. At least some of the deployable continuous fibers are deployed into fractures within a subterranean rock formation. Each deployed fiber is continuous from the tool body to the rock formation. The number of deployable continuous fibers provides sufficient redundancy to make at least a target measurement relating to the fracturing process.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: April 19, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Patent number: 7852708
    Abstract: Methods and related systems are described for use with hydraulic fracturing and other oilfield applications. A tool body is positioned in a wellbore at a location near a subterranean rock formation being fractured. The tool body contains a plurality of deployable continuous fibers. At least some of the deployable continuous fibers are deployed into fractures within a subterranean rock formation. Each deployed fiber is continuous from the tool body to the rock formation. The number of deployable continuous fibers provides sufficient redundancy to make at least a target measurement relating to the fracturing process.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: December 14, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Publication number: 20100000215
    Abstract: A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 7, 2010
    Applicant: Schlumberger Technology Corporation
    Inventors: Terizhandur S. Ramakrishnan, Sandeep Verma, Wenlin Zhang, Philippe Lacour-Gayet, Muthusamy Vembusubramanian
  • Publication number: 20090283259
    Abstract: Methods and related systems are described for use with a wireline tool system including a wireline cable designed to deploy a wireline tool into a wellbore from the surface, the wireline cable having one or more conducting members for communication between the wireline tool and the surface; and a plurality of sensing elements located on the wireline cable in a spaced apart fashion along substantially the entire length of the wireline cable, each sensing element being in communication with one or more adjacent sensing elements.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Publication number: 20090283261
    Abstract: Methods and related systems are described for use with continuous fiber based system for use with well bore completions comprising: a plurality of continuous fibers deployable into a portion of a well bore completion; a fiber management module adapted and positioned within the borehole to facilitate deployment of and communication with the plurality of continuous fibers; wherein the number of deployable continuous fibers provides sufficient redundancy to make at least a target measurement relating to the completion.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Publication number: 20090285051
    Abstract: Methods and related systems are described for use with hydraulic fracturing and other oilfield applications. A tool body is positioned in a wellbore at a location near a subterranean rock formation being fractured. The tool body contains a plurality of deployable continuous fibers. At least some of the deployable continuous fibers are deployed into fractures within a subterranean rock formation. Each deployed fiber is continuous from the tool body to the rock formation. The number of deployable continuous fibers provides sufficient redundancy to make at least a target measurement relating to the fracturing process.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Publication number: 20090283258
    Abstract: Methods and related systems are described for use with hydraulic fracturing and other oilfield applications. A tool body is positioned in a wellbore at a location near a subterranean rock formation being fractured. The tool body contains a plurality of deployable continuous fibers. At least some of the deployable continuous fibers are deployed into fractures within a subterranean rock formation. Each deployed fiber is continuous from the tool body to the rock formation. The number of deployable continuous fibers provides sufficient redundancy to make at least a target measurement relating to the fracturing process.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin E. Poitzsch, Pabitra N. Sen, Karen Wiemer, Guillemette Picard, Muthusamy Vembusubramanian
  • Patent number: 7607303
    Abstract: A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: October 27, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Terizhandur S. Ramakrishnan, Sandeep Verma, Wenlin Zhang, Philippe Lacour-Gayet, Muthusamy Vembusubramanian
  • Publication number: 20080155958
    Abstract: A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Applicant: Schlumberger Technology Corporation
    Inventors: Terizhandur S. Ramakrishnan, Sandeep Verma, Wenlin Zhang, Philippe Lacour-Gayet, Muthusamy Vembusubramanian