Patents by Inventor Myo Thu Maung

Myo Thu Maung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230031222
    Abstract: A system for processing cells is provided. The system can include a cell culture container, a fluid handling device, and one or more removable cell processing modules for performing one or more cell processing processes. The one or more removable cell processing modules can include a fluid handling pathway. The one or more removable cell processing modules can be fluidly connected to the cell culture container and the fluid handling device via a receptacle in which the cell processing modules may be inserted. The system can be a closed system.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 2, 2023
    Inventors: Myo Thu MAUNG, Matthew Everly FOWLER, Paul DABROWSKI, Sergey SHKAPOV, Ivan RAZINKOV, Jingling LI, Daniel SLOMSKI, Jeffrey SMITH, James Duncan BRAZA, Aliya KUSUMO, Brandon Phillip WHITNEY
  • Publication number: 20190217302
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Patent number: 10226770
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: March 12, 2019
    Assignee: Fluidigm Corporation
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Publication number: 20180306683
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: March 19, 2018
    Publication date: October 25, 2018
    Applicant: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Patent number: 9952126
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 24, 2018
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C Norris, Dominique Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Patent number: 9506845
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 29, 2016
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Patent number: 9429500
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: August 30, 2016
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Publication number: 20160114327
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: September 24, 2015
    Publication date: April 28, 2016
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Patent number: 9304065
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 5, 2016
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Patent number: 9168531
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 27, 2015
    Assignee: FLUIDIGM CORPORATION
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Publication number: 20130302884
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130302807
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130302883
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130296196
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 7, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130295602
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 7, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130078610
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 28, 2013
    Applicant: Fluidigm Corporation
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung