Patents by Inventor Myoung-Ki Min

Myoung-Ki Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8361663
    Abstract: The porous carbon structure according to one embodiment of the present invention includes mesopores, and at least two kinds of macropores having different average pore diameters. The porous carbon structure includes inter-connected pores and thereby increases specific surface area and improves electronic conductivity.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 29, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soon-Ki Kang, Geun-Seok Chai, Myoung-Ki Min, Chan Kwak, Alexey Alexandrovichserov
  • Publication number: 20130017461
    Abstract: An electrode for a fuel cell is disclosed. The electrode may include an electrode substrate with a conductive substrate, carbon particles, and a catalyst layer disposed on the electrode substrate. The electrode substrate may include a pore having an average diameter of about 20 ?m to about 40 ?m and porosity of about 30 volume % to about 80 volume % based on the total volume of the electrode substrate. A membrane-electrode assembly including the electrode and a fuel cell system including the membrane electrode assembly are also disclosed.
    Type: Application
    Filed: December 29, 2011
    Publication date: January 17, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Sang-II HAN, Kah-Young SONG, Hee-Tak KIM, Sung-Yong CHO, Tae-Yoon KIM, Myoung-Ki MIN, Geun-Seok CHAI
  • Patent number: 8318379
    Abstract: A membrane-electrode assembly for a mixed reactant fuel cell and a mixed reactant fuel cell system including the same. In one embodiment of the present invention, a membrane-electrode assembly for a mixed reactant fuel cell includes an anode catalyst layer, a cathode catalyst layer, a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer, an electrode substrate disposed on at least one of the anode catalyst layer or the cathode catalyst layer, and an oxidant supply path penetrating the polymer electrolyte membrane, the anode catalyst layer, the cathode catalyst layer, and the electrode substrate and adapted to supply an oxidant.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: November 27, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan Kwak, Alexey AlexandrovichSerov, Myoung-Ki Min, Si-Hyun Lee
  • Patent number: 8227146
    Abstract: The present invention relates to a cathode catalyst for a fuel cell, a membrane-electrode assembly for a fuel cell including the cathode catalyst, and a fuel cell system. The cathode catalyst includes a core including RuO2, and Se and Pt. The Se and Pt are disposed to enclose the core. The cathode catalyst for a fuel cell of the present invention can have excellent catalyst efficiency, even if less platinum is included therein.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: July 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Chan Kwak, Alexey Alexandrovichserov
  • Patent number: 8158056
    Abstract: An arrangement producing metal nanoparticles includes a ?-ray irradiator installed in a radioactive shielding room, a reactor that is disposed to oppose the ?-ray irradiator, and a power supply installed outside the radioactive shielding room to supply power to the reactor. The reactor includes a container receiving reaction materials and transmitting the energy of ?-rays to reaction materials arranged inside of the reactor, an agitator that is installed in the container to be capable of rotating, and a driving source for receiving the power from the power supply to drive the agitator.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 17, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Geun-Seok Chai, Myoung-Ki Min, Soon-Ki Kang
  • Publication number: 20120034549
    Abstract: A fuel cell separator and a fuel cell system including the same. The separator includes a main body including a plurality of cell barriers and a flow channel disposed between the cell bathers, and a hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel of the main body. The hydrophilic surface-treatment layer disposed on the bottom surface of the flow channel has a contact angle less than a contact angle of a side surface of at least one of the cell barriers by approximately 10° to approximately 60°.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Kah-Young Song, Tae-Yoon Kim, Sang-Il Han, Geun-Seok Chai, Myoung-Ki Min
  • Publication number: 20120021325
    Abstract: A membrane-electrode assembly for a fuel cell, the membrane-electrode assembly including an electrolyte membrane; an edge protective layer located at generally an edge of the electrolyte membrane; and a catalytic layer including a plate portion contacting the electrolyte membrane and a protruding portion protruding from the plate portion and contacting the edge protective layer.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 26, 2012
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Geun-Seok Chai, Myoung-Ki Min
  • Publication number: 20120015261
    Abstract: A fuel cell system having improved driving performance is disclosed. The fuel cell system includes a stack, which may include a membrane electrode assembly, a separator and end plates provided on the both sides of the stacked membrane electrode assembly and the separator. The membrane electrode assembly may include an anode electrode, a cathode electrode, and an electrolyte membrane. The separator may be positioned with respect to the anode electrode and the cathode electrode, respectively. The end plate may include an oxidant inlet configured to supply oxidant to the cathode electrode, an unreacted oxidant outlet configured to output the unreacted oxidant from the cathode electrode, and a absorption member in fluid communication between the oxidant inlet and the unreacted oxidant outlet.
    Type: Application
    Filed: June 20, 2011
    Publication date: January 19, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Sang-Il HAN, Kah-Young SONG, Jin-Hwa LEE, Myoung-Ki MIN, Young-Mi PARK
  • Publication number: 20110305969
    Abstract: A fuel cell stack including membrane-electrode assemblies and separators formed between each of the membrane-electrode assemblies is disclosed. The membrane-electrode assemblies may each include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. Each of the separators may include an anode separator facing the anode and a cathode separator facing the cathode. Each of the separators may include at least two manifolds, a channel separated from the manifolds and facing either the anode or the cathode, and a connection channel fluidly connecting the manifold and the channel. The separator may also include a buffer protrusion system in the connection channel configured to disperse the flow of the fuel or the oxidant.
    Type: Application
    Filed: November 22, 2010
    Publication date: December 15, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Kah-Young Song, Jin-Hwa Lee, Sang-Il Han, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Publication number: 20110305966
    Abstract: A fuel cell stack including an electricity generating unit and a pair of end plates is disclosed. The electricity generating unit includes membrane-electrode assemblies and separators interposed between the membrane-electrode assemblies. The separators have recess portions formed on side faces thereof and may be configured to hold an external device for replacement of a single membrane-electrode assembly within the fuel cell stack. The end plates are located sandwiching the electricity generating unit by using fastening members to press the electricity generating unit.
    Type: Application
    Filed: November 24, 2010
    Publication date: December 15, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Hee-Tak Kim, Geun-Seok Chai, Sang-Il Han, Tae-Yoon Kim, Sung-Yong Cho, Kah-Young Song
  • Publication number: 20110305960
    Abstract: A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.
    Type: Application
    Filed: November 19, 2010
    Publication date: December 15, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Kah-Young Song, Sang-Il Han, Jin-Hwa Lee, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Patent number: 8053144
    Abstract: Disclosed is a membrane-electrode assembly for a fuel cell including an anode and a cathode with a polymer electrolyte membrane placed between them. At least one of the anode and the cathode includes a catalyst layer including a catalyst metal with a hydrophilic polymer layer on the catalyst metal.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: November 8, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Myoung-Ki Min
  • Patent number: 8039173
    Abstract: A cathode catalyst for a fuel cell includes a carrier and an A-B alloy supported on the carrier, where A is at least one metal selected from the group consisting of Pd, Ir, Rh, and combinations thereof, and B is at least one metal selected from the group consisting of Mo, W, and combinations thereof. The carrier is composed of at least one chalcogen element selected from the group consisting of S, Se, Te, and combinations thereof.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: October 18, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Publication number: 20110244363
    Abstract: An electrode catalyst for a fuel cell including a carbon-based carrier and an active metal supported in the carrier, for example, an electrode catalyst for a fuel cell includes a carrier and an active metal supported in the carrier, wherein the electrode catalyst has an X value of 95 to 100% in Equation 1. X(%)=(XPS measurement value)/(TGA measurement value)×100??[Equation 1] wherein, the XPS measurement value represents a quantitative amount of the active metal present on a surface of the electrode catalyst, the TGA measurement value represents the XPS measurement value using a monochromated Al K?-ray, which is the quantitative amount of total active metal supported in the catalyst.
    Type: Application
    Filed: November 12, 2010
    Publication date: October 6, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki MIN, Geun-Seok CHAI, Hee-Tak KIM, Tae-Yoon KIM, Sang-Il HAN, Kah-Young SONG, Sung-Yong CHO
  • Publication number: 20110244362
    Abstract: A catalyst for a fuel cell including a carrier and an active metal dispersion that is supported in the carrier is disclosed. The catalyst may have a dispersity (Dp) represented by General Formula 1 and that ranges from between about 0.01 to about 1.0. Dispersity(Dp)={X?X10/(X1?B)}*(B/X)2??[General Formula 1] In the General Formula 1, X, X10, X1, and B are defined the same as described in the specification. A membrane-electrode assembly, and a fuel cell system having the catalyst are also disclosed.
    Type: Application
    Filed: July 26, 2010
    Publication date: October 6, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Myoung-Ki MIN, Geun-Seok CHAI, Hee-Tak KIM, Tae-Yoon KIM, Sang-Il HAN, Sung-Yong CHO, Kah-Young SONG
  • Publication number: 20110229785
    Abstract: A fuel cell stack includes a plurality of membrane electrode assemblies, each of the membrane electrode assemblies having an electrolyte membrane; an anode on a first side of the electrolyte membrane; and a cathode on a second side of the electrolyte membrane opposite to the first side, wherein the anode and the cathode each comprise a gas diffusion layer divided into at least two areas such that a first area and a second area have different area densities; and a separator between adjacent membrane electrode assemblies.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 22, 2011
    Inventors: Kah-Young Song, Hee-Tak Kim, Sang-Il Han, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Publication number: 20110223515
    Abstract: A membrane-electrode assembly for a fuel cell is disclosed. The membrane-electrode assembly may include a polymer electrolyte membrane, an adhesive layer disposed on the polymer electrolyte membrane and a catalyst layer formed, as part of the adhesive layer. The polymer electrolyte membrane, the adhesive layer and the catalyst layer may be positioned between a cathode substrate and an anode substrate. The cathode may include a cathode substrate and the anode may include an anode substrate. A method for manufacturing a membrane-electrode assembly and a system incorporating a membrane-electrode assembly are also disclosed.
    Type: Application
    Filed: October 21, 2010
    Publication date: September 15, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Sang-Il Han, Kah-Young Song, Geun-Seok Chai, Myoung-Ki Min
  • Publication number: 20110195331
    Abstract: A fuel cell stack includes membrane-electrode assemblies and separators that are closely disposed to both sides of the membrane-electrode assembly. Each membrane-electrode assembly includes an electrolyte membrane, an anode electrode that is formed on one surface of the electrolyte membrane, a cathode electrode that is formed on the other surface of the electrolyte membrane, and a protective layer formed at an oxidant inlet region where oxidant is first injected into the respective cathode electrode.
    Type: Application
    Filed: June 17, 2010
    Publication date: August 11, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Kah-Young SONG, Jin-Hwa Lee, Sang-Il Han, Hee-Tak Kim, Tae-Yoon Kim, Sung-Yong Cho, Myoung-Ki Min, Geun-Seok Chai
  • Publication number: 20110053029
    Abstract: A membrane electrode assembly for a fuel cell that secures a flow path of a separator while preventing generation of a pin-hole. The membrane electrode assembly includes an electrolyte membrane for a fuel cell, a microporous layer that is disposed at both surfaces of the electrolyte membrane, a backing layer that is disposed on the microporous layer, and a circumferential edge protective layer that is disposed at an circumferential edge of the electrolyte membrane. An end portion of the microporous layer is positioned further inside of the membrane electrode assembly than an end portion of the backing layer. The circumferential edge protective layer is inserted between the backing layer and the electrolyte membrane.
    Type: Application
    Filed: July 28, 2010
    Publication date: March 3, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hee-Tak Kim, Sung-Yong Cho, Tae-Yoon Kim, Kah-Young Song, Sang-Il Han, Myoung-Ki Min, Geun-Seok Chai, Soon-Cheol Shin
  • Patent number: 7883806
    Abstract: A fuel cell reforming catalyst includes a platinum-group metal; an inorganic oxide selected from CeO2, Pr6O11, and combinations thereof; a strong acid ion; and a carrier. The fuel cell reforming catalyst has high activity for the reforming reaction at low temperatures and low space velocities.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 8, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Leonid Gorobinskiy, Norboru Sato, Ju-Yong Kim, Myoung-Ki Min, Jin-Goo Ahn, Elena Alekseeva