Patents by Inventor Myoung Suh

Myoung Suh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170066724
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 9, 2017
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Publication number: 20170056475
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Publication number: 20160354440
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Application
    Filed: August 18, 2016
    Publication date: December 8, 2016
    Applicant: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Patent number: 9446097
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: September 20, 2016
    Assignee: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Publication number: 20160237133
    Abstract: The present disclosure provides chimeric proteins having an N-terminus coupled to a C-terminus, wherein the N-terminus comprises an N-terminal portion of fibroblast growth factor (FGF) 2 and the C-terminus comprises a portion of an FGF1 protein. Such FGF2/FGF1 chimeras can further include a fibroblast growth factor receptor (FGFR) 1c-binding protein, a ?-Klotho-binding protein, or both. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed molecules to reduce blood glucose levels are also provided.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 18, 2016
    Applicant: Salk Institute for Biological Studies
    Inventors: Jae Myoung Suh, Michael Downes, Ronald M. Evans, Annette Atkins
  • Publication number: 20160206695
    Abstract: The present disclosure provides chimeric proteins having an N-terminus coupled to a C-terminus, wherein the N-terminus comprises an N-terminal portion of fibroblast growth factor (FGF) 2 and the C-terminus comprises a portion of an FGF1 protein, wherein the chimeric protein comprises at least 95% sequence identity to SEQ ID NO: 9, 10, 11, 12 or 13. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed molecules to reduce blood glucose levels are also provided.
    Type: Application
    Filed: April 6, 2016
    Publication date: July 21, 2016
    Applicant: Salk Institute for Biological Studies
    Inventors: Jae Myoung Suh, Michael Downes, Ronald M. Evans, Annette Atkins, Senyon Choe, Witek Kwiatkowski
  • Publication number: 20150343022
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 3, 2015
    Applicant: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Publication number: 20150258052
    Abstract: Provided are methods of promoting browning of white adipose tissue (WAT) in a subject. Such methods can include administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of fexaramine in combination with a therapeutically effective amount of a compound that mimics or increases sympathetic nervous system activity (e.g., one or more beta-adrenergic agonists and/or compounds that increase epinephrine secretion).
    Type: Application
    Filed: March 13, 2015
    Publication date: September 17, 2015
    Applicants: Salk Institute for Biological Studies, The Regents of the University of Michigan
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Ruth T. Yu, Alan R. Saltiel
  • Patent number: 9072708
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidaemia, obesity, and fatty liver.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: July 7, 2015
    Assignee: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Publication number: 20150111821
    Abstract: The present disclosure provides FGF1 mutant proteins, such as those having an N-terminal deletion, point mutation(s), or combinations thereof, which can reduce blood glucose in a mammal. Such mutant FGF1 proteins can be part of a chimeric protein that includes a ?-Klotho-binding protein, an FGFR1c-binding protein, a ?-Klotho-binding protein and a FGFR1c-binding protein, a C-terminal region from FGF19 or FGF21. In some examples, mutant FGF1 proteins have reduced mitogenic activity. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed molecules to reduce blood glucose levels are also provided.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Jae Myoung Suh, Michael Downes, Ronald M. Evans, Annette Atkins, Ruth T. Yu
  • Patent number: 8999929
    Abstract: The present invention relates to a chimeric protein that includes an N-terminus coupled to a C-terminus, where the N-terminus includes a portion of a paracrine fibroblast growth factor (“FGF”) and the C-terminus includes a C-terminal portion of an FGF19 molecule. The portion of the paracrine FGF is modified to decrease binding affinity for heparin and/or heparan sulfate compared to the portion without the modification. The present invention also relates to pharmaceutical compositions including chimeric proteins according to the present invention, methods for treating a subject suffering from diabetes, obesity, or metabolic syndrome, and methods of screening for compounds with enhanced binding affinity for the ?Klotho-FGF receptor complex involving the use of chimeric proteins of the present invention.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: April 7, 2015
    Assignees: Salk Institute for Biological Studies, New York University
    Inventors: Moosa Mohammadi, Regina M. Goetz, Ronald M. Evans, Michael Downes, Jae Myoung Suh
  • Publication number: 20150065419
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidaemia, obesity, and fatty liver.
    Type: Application
    Filed: October 28, 2014
    Publication date: March 5, 2015
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: JOHAN W. JONKER, MICHAEL DOWNES, RONALD M. EVANS, JAE MYOUNG SUH
  • Patent number: 8906854
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidaemia, obesity, and fatty liver.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: December 9, 2014
    Assignee: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Publication number: 20140155316
    Abstract: The present invention relates to a chimeric protein that includes an N-terminus coupled to a C-terminus, where the N-terminus includes a portion of a paracrine fibroblast growth factor (“FGF”) and the C-terminus includes a C-terminal portion of an FGF19 molecule. The portion of the paracrine FGF is modified to decrease binding affinity for heparin and/or heparan sulfate compared to the portion without the modification. The present invention also relates to pharmaceutical compositions including chimeric proteins according to the present invention, methods for treating a subject suffering from diabetes, obesity, or metabolic syndrome, and methods of screening for compounds with enhanced binding affinity for the ?Klotho-FGF receptor complex involving the use of chimeric proteins of the present invention.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicants: New York University, Salk Institute for Biological Studies
    Inventors: Moosa Mohammadi, Regina M. Goetz, Ronald M. Evans, Michael Downes, Jae Myoung Suh
  • Publication number: 20070075291
    Abstract: A CMP slurry is provided comprising polishing particles, the polishing particle comprising organically modified colloidal silica. Also, a method of preparing a CMP slurry is provided, comprising the steps of: preparing polishing particles comprising organically modified silica; converting the polishing particles into an aqueous state; and adding pure water, a hydrophilic additive and a dispersing agent to the polishing particles. The polishing particles can be synthesized using a sol-gel process. According to the invention, a slurry having excellent polishing properties can be prepared, in which the surface properties of colloidal silica are changed to control the physical properties of the polishing particles and which can ensure a desired CMP removal rate while minimizing the occurrence of scratches.
    Type: Application
    Filed: June 2, 2006
    Publication date: April 5, 2007
    Inventors: Un Paik, Jea Park, Sang Kim, Ye Kim, Myoung Suh, Dae Kim
  • Publication number: 20060156635
    Abstract: Disclosed herein is a polishing slurry for use in an STI CMP process, necessary for fabricating ultra highly integrated semiconductors of 256 mega D-RAM or more (Design rule of 0.13 ?m or less), which can polish wafers at a high removal rate, having an excellent the removal selectivity of oxide compared to nitride. The polishing slurry can be applied to various patterns required in the course of producing ultra highly integrated semiconductors, and thus excellent removal rate, removal selectivity, and within-wafer-nonuniformity (WIWNU), which indicates removal uniformity, as well as minimal occurrence of micro scratches, can be assured.
    Type: Application
    Filed: December 16, 2005
    Publication date: July 20, 2006
    Applicants: K.C. TECH CO., LTD., IUCF-HYU
    Inventors: Dae Kim, Seok Hong, Yong Kim, Dong Kim, Myoung Suh, Jea Park, Un Paik