Patents by Inventor Myriam Pannetier-Lecoeur

Myriam Pannetier-Lecoeur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230375644
    Abstract: A magnetic field sensor includes a first coil responsive to a first AC coil drive signal having a first frequency, a magnetic field sensing element responsive to a sensing element drive signal and configured to simultaneously detect a directly coupled magnetic field generated by the first coil and a reflected magnetic field generated by an eddy current induced in a conductive target by the first coil, the conductive target disposed proximate to the magnetic field sensing element, the magnetic field sensing element further configured to generate a magnetic field signal, a second coil responsive to a second AC coil drive signal having a second frequency that is the same as the first frequency and current sensing circuitry configured to measure a magnitude of the second AC coil drive signal that causes the magnetic field signal to be approximately zero.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Applicants: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hernán D. Romero
  • Publication number: 20230366955
    Abstract: A system for suppressing low frequency magnetic noise from magnetoresistive sensors, the system including at least one magneto-resistive sensor including a free magnetic layer having a variable magnetisation, and a system for modifying magnetisation of the free magnetic layer, wherein the system for modifying magnetisation of the free layer is adapted to drive dynamics of the magnetisation of the free magnetic layer.
    Type: Application
    Filed: September 30, 2021
    Publication date: November 16, 2023
    Inventors: Aurélie SOLIGNAC, Mafalda JOTTA GARCIA, Julien MOULIN, Steffen WITTROCK, Paolo BORTOLOTTI, Vincent CROS, Claude FERMON, Myriam PANNETIER-LECOEUR
  • Patent number: 11768256
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: September 26, 2023
    Assignees: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hernán D. Romero
  • Publication number: 20220384715
    Abstract: A magnetoresistive stack includes a reference layer including a magnetic layer, an antiferromagnetic layer in exchange coupling with the magnetic layer, a magnetic layer substantially of the same magnetisation as the magnetic layer, a spacer layer between the magnetic layers with a thickness for enabling an antiferromagnetic coupling between the magnetic layers of a first coupling intensity, a free layer having a coercivity of less than 10 microTesla, the free layer including a magnetic layer, an antiferromagnetic layer in exchange coupling with the magnetic layer, a magnetic layer substantially of the same magnetisation as the magnetic layer, a spacer layer between the magnetic layers with a thickness for enabling an antiferromagnetic coupling between the magnetic layers of a second coupling intensity lower than the first coupling intensity, a third spacer layer separating the reference and free layers.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 1, 2022
    Inventors: Claude FERMON, Aurélie SOLIGNAC, Myriam PANNETIER-LECOEUR
  • Publication number: 20220342007
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 27, 2022
    Applicants: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hernán D. Romero
  • Patent number: 11428755
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: August 30, 2022
    Assignees: Allegro Microsystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hernán D. Romero
  • Patent number: 11255926
    Abstract: A system for suppressing low frequency noise of magnetoresistive sensors, includes a device for measuring a magnetic field, the device including at least one magnetoresistive sensor, the magnetoresistive sensor having a first sensitivity at a first operating point and a second sensitivity at a second operating point, the sensitivity at the second operating point being low or zero; a modulator configured to switch the at least one magnetoresistive sensor from the first operating point to the second operating point; and a signal processor for processing the signal derived from the device for measuring a magnetic field.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 22, 2022
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Vincent Trauchessec
  • Patent number: 11255925
    Abstract: A system for suppressing low frequency noise of magnetoresistive sensors, includes a device for measuring a magnetic field, the device including at least one magnetoresistive sensor, the magnetoresistive sensor having a first sensitivity at a first operating point and a second sensitivity at a second operating point, the sensitivity at the second operating point being low or zero; a modulator configured to switch the at least one magnetoresistive sensor from the first operating point to the second operating point; and a signal processor for processing the signal derived from the device for measuring a magnetic field.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 22, 2022
    Assignee: COMMISSARIAT Â L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Myriam Pannetier-Lecoeur, Aurélie Solignac, Vincent Trauchessec, Claude Fermon
  • Patent number: 11115084
    Abstract: Methods and apparatus for providing data transfer with a drive coil to transmit information, a receive coil magnetically coupled to the drive coil, and a first magnetoresistive sensor proximate the receive coil to detect information from the receive coil. In embodiments, the drive and receive coils are separated by an isolation material. In embodiments, a signal isolator IC packages includes transmit and receive coils and a magnetic field sensing element coupled to the receive coil.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 7, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Alexander Latham, Claude Fermon, Myriam Pannetier-Lecoeur
  • Publication number: 20210141033
    Abstract: A system for suppressing low frequency noise of magnetoresistive sensors, includes a device for measuring a magnetic field, the device including at least one magnetoresistive sensor, the magnetoresistive sensor having a first sensitivity at a first operating point and a second sensitivity at a second operating point, the sensitivity at the second operating point being low or zero; a modulator configured to switch the at least one magnetoresistive sensor from the first operating point to the second operating point; and a signal processor for processing the signal derived from the device for measuring a magnetic field.
    Type: Application
    Filed: June 1, 2018
    Publication date: May 13, 2021
    Inventors: Aurélie SOLIGNAC, Claude FERMON, Myriam PANNETIER-LECOEUR, Vincent TRAUCHESSEC
  • Patent number: 10996289
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least two spaced apart magnetic field sensing elements responsive to a sensing element drive signal and positioned proximate to the at least one coil; and a circuit coupled to the at least two magnetic field sensing elements to generate an output signal of the magnetic field sensor indicative of a difference between a distance of a conductive target with respect to each of the at least two spaced apart magnetic field sensing elements.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 4, 2021
    Assignees: Allegro MicroSystems, LLC, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Alexander Latham, Claude Fermon, Myriam Pannetier-Lecoeur, Bryan Cadugan
  • Patent number: 10908243
    Abstract: An NMR spectroscopy system for studying a region of a sample to be analysed, includes a magnetoresistive transducer made up of superposed planar layers, which receives a response signal of the sample; a system for making an AC current flow, at a supply frequency fc, through the transducer; a system for generating a magnetic field H0 that is constant and uniform throughout a zone of interest in which the sample and transducer are placed; and an exciting coil to generate a magnetic field H1 that is uniform throughout the zone of interest and that varies at a resonant frequency f1; the field H0 is substantially perpendicular to the layers of the transducer. The system further includes a regulating system to ensure that the field H0 and the planar layers remain orthogonal, and a system for detecting a signal of frequency fc?f1, f1?fc or fc+f1.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 2, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pierre-André Guitard, Claude Fermon, Myriam Pannetier-Lecoeur, Guénaëlle Jasmin-Lebras
  • Publication number: 20200182947
    Abstract: A system for suppressing low frequency noise of magnetoresistive sensors, includes a device for measuring a magnetic field, the device including at least one magnetoresistive sensor, the magnetoresistive sensor having a first sensitivity at a first operating point and a second sensitivity at a second operating point, the sensitivity at the second operating point being low or zero; a modulator configured to switch the at least one magnetoresistive sensor from the first operating point to the second operating point; and a signal processor for processing the signal derived from the device for measuring a magnetic field.
    Type: Application
    Filed: June 1, 2018
    Publication date: June 11, 2020
    Inventors: Myriam PANNETIER-LECOEUR, Aurélie SOLIGNAC, Vincent TRAUCHESSEC, Claude FERMON
  • Publication number: 20200169299
    Abstract: Methods and apparatus for providing data transfer with a drive coil to transmit information, a receive coil magnetically coupled to the drive coil, and a first magnetoresistive sensor proximate the receive coil to detect information from the receive coil. In embodiments, the drive and receive coils are separated by an isolation material. In embodiments, a signal isolator IC packages includes transmit and receive coils and a magnetic field sensing element coupled to the receive coil.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicants: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Claude Fermon, Myriam Pannetier-Lecoeur
  • Patent number: 10363128
    Abstract: A device for prosthetic vision rehabilitation, which includes a scleral explant with a shape that is suitable for being in contact with at least one portion of the sclera of an eye, and at least one inducer arranged on the scleral explant.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: July 30, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Myriam Pannetier-Lecoeur, Vincent Trauchessec, Laure Caruso, Frederic Chavane, Sebastien Roux, Frederic Matonti
  • Patent number: 10310028
    Abstract: A pressure sensor includes a chamber comprising a conductive portion and a deformable portion coupled to the conductive portion and susceptible to deformation in response to a pressure differential between an interior of the chamber and an exterior of the chamber; at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element disposed proximate to the at least one coil and to the conductive portion of the chamber and configured to generate a magnetic field signal in response to a reflected magnetic field generated by the at least one coil and reflected by the conductive portion; and a circuit coupled to the at least one magnetic field sensing element to generate an output signal of the pressure sensor indicative of the pressure differential between the interior of the chamber and the exterior of the chamber in response to the magnetic field signal.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: June 4, 2019
    Assignees: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Alexander Latham, Michael C. Doogue, Claude Fermon, Xavier Du Hamel De Milly, Myriam Pannetier-Lecoeur
  • Publication number: 20190137584
    Abstract: An NMR spectroscopy system for studying a region of a sample to be analysed, includes a magnetoresistive transducer made up of superposed planar layers, which receives a response signal of the sample; a system for making an AC current flow, at a supply frequency fc, through the transducer; a system for generating a magnetic field H0 that is constant and uniform throughout a zone of interest in which the sample and transducer are placed; and an exciting coil to generate a magnetic field H1 that is uniform throughout the zone of interest and that varies at a resonant frequency f1; the field H0 is substantially perpendicular to the layers of the transducer. The system further includes a regulating system to ensure that the field H0 and the planar layers remain orthogonal, and a system for detecting a signal of frequency fc?f1, f1?fc or fc+f1.
    Type: Application
    Filed: February 28, 2017
    Publication date: May 9, 2019
    Inventors: Pierre-André GUITARD, Claude FERMON, Myriam PANNETIER-LECOEUR, Guénaëlle JASMIN-LEBRAS
  • Publication number: 20180340986
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hemán D. Romero
  • Publication number: 20180340990
    Abstract: A pressure sensor includes a chamber comprising a conductive portion and a deformable portion coupled to the conductive portion and susceptible to deformation in response to a pressure differential between an interior of the chamber and an exterior of the chamber; at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element disposed proximate to the at least one coil and to the conductive portion of the chamber and configured to generate a magnetic field signal in response to a reflected magnetic field generated by the at least one coil and reflected by the conductive portion; and a circuit coupled to the at least one magnetic field sensing element to generate an output signal of the pressure sensor indicative of the pressure differential between the interior of the chamber and the exterior of the chamber in response to the magnetic field signal.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Alexander Latham, Michael C. Doogue, Claude Fermon, Xavier Du Hamel De Milly, Myriam Pannetier-Lecoeur
  • Publication number: 20180340989
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least two spaced apart magnetic field sensing elements responsive to a sensing element drive signal and positioned proximate to the at least one coil; and a circuit coupled to the at least two magnetic field sensing elements to generate an output signal of the magnetic field sensor indicative of a difference between a distance of a conductive target with respect to each of the at least two spaced apart magnetic field sensing elements.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Alexander Latham, Claude Fermon, Myriam Pannetier-Lecoeur, Bryan Cadugan