Patents by Inventor Myron A. Diftler

Myron A. Diftler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110067521
    Abstract: A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Douglas Martin Linn, Robert O. Ambrose, Myron A. Diftler, Scott R. Askew, Robert Platt, Joshua S. Mehling, Nicolaus A. Radford, Philip A. Strawser, Lyndon Bridgwater, Charles W. Wampler, II, Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Adam M. Sanders, David M. Reich, Brian Hargrave, Adam H. Parsons, Frank Noble Permenter, Donald R. Davis
  • Publication number: 20110071664
    Abstract: A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Myron A. Diftler
  • Publication number: 20110071678
    Abstract: A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Rpresented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, David M. Reich, Lyndon Bridgwater, Douglas Martin Linn, Scott R. Askew`, Myron A. Diftler, Robert Platt, Brian Hargrave, Michael C. Valvo, Muhammad E. Abdallah, Frank Noble Permenter, Joshua S. Mehling
  • Publication number: 20100280662
    Abstract: A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.
    Type: Application
    Filed: March 10, 2010
    Publication date: November 4, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Charles W. Wampler, II, Myron A. Diftler, Robert J. Platt, JR., Lyndon Bridgwater
  • Patent number: 7784363
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 31, 2010
    Assignees: GM Global Technology Operations, Inc., The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith
  • Publication number: 20100121222
    Abstract: A technique that determines the tension in a tendon using a conduit reaction force applied to an end of a conduit through which the tendon is threaded. Any suitable tendon tension sensor can be employed that uses the conduit reaction force for this purpose. In one non-limiting embodiment, the tendon tension sensor includes a cylindrical strain gauge element and a force member mounted to an end of the conduit. The force member includes a cylindrical portion having a bore and a plate portion, where the cylindrical portion is inserted into a bore in the strain gauge element. The tendon is threaded through the strain gauge element and the force member. A strain gauge is mounted to the strain gauge element and measures the reaction force when tension on the tendon causes the strain gauge element to be pushed against the force member.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE U.S.A. AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: MUHAMMAD E. ABDALLAH, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Charles W. Wampler, II, Robert Platt
  • Publication number: 20100077867
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE UNITED STATES OF AMERICA
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith
  • Patent number: 6244644
    Abstract: A compact robotic hand 10 includes a palm housing 16, a wrist section 12 and a forearm section 16. The palm housing supports a plurality of fingers 18, 20, 22 and one or more movable palm members 24, 25 that cooperate with the fingers to grasp and/or release an object. Each flexible finger 18, 20, 22 comprises a plurality of hingedly connected segments, including a proximal segment 16 pivotally connected to the palm housing. The proximal finger segment 16 includes at least one groove 122 defining first and second cam surfaces 126, 128 for engagement with a cable 60. A plurality of lead screw assemblies 54 each carried by the palm housing are supplied with power from a flexible shaft 92 rotated by an actuator 91, and output linear motion to a cable 60 move a finger. The cable 60 is secured within a respective groove 122 and enables each finger to move between an opened and closed position.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: June 12, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Christopher Scott Lovchik, Myron A. Diftler
  • Patent number: D628609
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 7, 2010
    Assignees: GM Global Technology Operations, Inc., NASA Lyndon B. Johnson Space Center, Oceaneering Space Systems
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Robert O. Ambrose, Joshua S Mehling, Myron A Diftler, Adam H Parsons, Nicolaus A Radford, Lyndon Bridgwater, Heather Bibby