Patents by Inventor Myung Cheol Yoo

Myung Cheol Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7772020
    Abstract: A vertical topology device includes a conductive adhesion structure having a first surface and a second surface, a conductive thick film support formed on the first surface, and a semiconductive device having an upper electrical contact and located over the conductive adhesion layer. Electrical current can flow between the conductive thick film and the upper electrical contact.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 10, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Publication number: 20100171125
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 8, 2010
    Inventor: Myung Cheol Yoo
  • Publication number: 20100129943
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 27, 2010
    Inventor: Myung Cheol Yoo
  • Publication number: 20100127274
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 27, 2010
    Inventor: Myung Cheol Yoo
  • Publication number: 20100117096
    Abstract: The invention provides a reliable technique to fabricate a new vertical structure compound semiconductor devices with highly improved light output. An exemplary embodiment of a method of fabricating light emitting semiconductor devices comprising the steps of forming a light emitting layer, and forming an undulated surface over light emitting layer to improve light output. In one embodiment, the method further comprises the step of forming a lens over the undulated surface of each of the semiconductor devices. In one embodiment, the method of claim further comprises the steps of forming a contact pad over the semiconductor structure to contact with the light emitting layer, and packaging each of the semiconductor devices in a package including an upper lead frame and lower lead frame. Advantages of the invention include an improved technique for fabricating semiconductor devices with great yield, reliability and light output.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: VERTICLE, INC.
    Inventors: Myung Cheol Yoo, Dong Woo Kim, Geun Young Yeom
  • Publication number: 20100109020
    Abstract: A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Inventor: Myung Cheol Yoo
  • Patent number: 7691650
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a fluorescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: April 6, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7682854
    Abstract: A method of forming a light emitting diode includes forming a transparent substrate and a GaN buffer layer on the transparent substrate. An n-GaN layer is formed on the buffer layer. An active layer is formed on the n-GaN layer. A p-GaN layer is formed on the active layer. A p-electrode is formed on the p-GaN layer and an n-electrode is formed on the n-GaN layer. A reflective layer is formed on a second side of the transparent substrate. A scribe line is formed on the substrate for separating the diodes on the substrate. Also, a cladding layer of AlGaN is between the p-GaN layer and the active layer.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: March 23, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7659550
    Abstract: A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: February 9, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Publication number: 20100012956
    Abstract: A light emitting diode includes a transparent substrate and a GaN buffer layer on the transparent substrate. An n-GaN layer is formed on the buffer layer. An active layer is formed on the n-GaN layer. A p-GaN layer is formed on the active layer. A p-electrode is formed on the p-GaN layer and an n-electrode is formed on the n-GaN layer. A reflective layer is formed on a second side of the transparent substrate. Also, a cladding layer of AlGaN is between the p-GaN layer and the active layer.
    Type: Application
    Filed: August 20, 2009
    Publication date: January 21, 2010
    Inventor: Myung Cheol Yoo
  • Patent number: 7649210
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 19, 2010
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Publication number: 20090278161
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Application
    Filed: July 21, 2009
    Publication date: November 12, 2009
    Inventors: Jong-Lam Lee, In-Kwon Jeong, Myung Cheol Yoo
  • Patent number: 7588952
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: September 15, 2009
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-Kwon Jeong, Myung Cheol Yoo
  • Patent number: 7582912
    Abstract: A light emitting diode includes a transparent substrate and a GaN buffer layer on the transparent substrate. An n-GaN layer is formed on the buffer layer. An active layer is formed on the n-GaN layer. A p-GaN layer is formed on the active layer. A p-electrode is formed on the p-GaN layer and an n-electrode is formed on the n-GaN layer. A reflective layer is formed on a second side of the transparent substrate. Also, a cladding layer of AlGaN is between the p-GaN layer and the active layer.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: September 1, 2009
    Assignee: LG Electronics Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7576368
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 18, 2009
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-Kwon Jeong, Myung Cheol Yoo
  • Patent number: 7569865
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: August 4, 2009
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-kwon Jeong, Myung Cheol Yoo
  • Patent number: 7563629
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: July 21, 2009
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-Kwon Jeong, Myung Cheol Yoo
  • Publication number: 20090072264
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal techniques. Trenches that define the boundaries of the individual devices are formed through the semiconductor layers and into the insulating substrate, beneficially by inductive coupled plasma reactive ion etching. A first support structure is attached to the semiconductor layers. The hard substrate is then removed, beneficially by laser lift off. A second supporting structure, preferably conductive, is substituted for the hard substrate and the first supporting structure is removed. Individual devices are then diced, beneficially by etching through the second supporting structure. A protective photo-resist layer can protect the semiconductor layers from the attachment of the first support structure.
    Type: Application
    Filed: October 8, 2008
    Publication date: March 19, 2009
    Inventor: Myung Cheol Yoo
  • Patent number: 7465592
    Abstract: The invention provides a reliable way to fabricate a new vertical structure compound semiconductor device with improved light output and a laser lift-off processes for mass production of GaN-based compound semiconductor devices. A theme of the invention is employing direct metal support substrate deposition prior to the LLO by an electro-plating method to form an n-side top vertical structure. In addition, an ITO DBR layer is employed right next to a p-contact layer to enhance the light output by higher reflectivity. A perforated metal wafer carrier is also used for wafer bonding for easy handling and de-bonding. A new fabrication process is more reliable compared to the conventional LLO-based vertical device fabrication. Light output of the new vertical device having n-side up structure is increased 2 or 3 times higher than that of the lateral device fabricated with same GaN/InGaN epitaxial films.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: December 16, 2008
    Assignee: Verticle, Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7462881
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 9, 2008
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-kwon Jeong, Myung Cheol Yoo