Patents by Inventor Myung Ji Suh

Myung Ji Suh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11660584
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1: X wt %+Y wt %=100 wt %,??<Equation 1> wherein X is a content of AB2O4 and is 5 or more and less than 30, and Y is a content of the porous support and is more than 70 and 95 or less, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: May 30, 2023
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang
  • Patent number: 11117119
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation having a porous structure which may easily control heat generation due to high-temperature and high-pressure reaction conditions and side reaction due to the porous structure and thus exhibits superior product selectivity, and a method of preparing the catalyst.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 14, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Yoon Jae Min, Dong Hyun Ko, Kyong Yong Cha, Se Won Baek, Jun Kyu Han
  • Publication number: 20210187485
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1: X wt %+Y wt %=100 wt %,??<Equation 1> wherein X is a content of AB2O4 and is 5 or more and less than 30, and Y is a content of the porous support and is more than 70 and 95 or less, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 24, 2021
    Inventors: Myung Ji SUH, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 10994262
    Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 4, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Seongmin Kim, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Kyu Han, Sun Hwan Hwang, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Ye Seul Hwang, Sang Jin Han
  • Patent number: 10926246
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention provides a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ?-iron oxide content in a catalyst in a predetermined range.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: February 23, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Jun Kyu Han, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Sun Hwan Hwang, Seong Min Kim
  • Patent number: 10888844
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1 of the present invention, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 12, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang
  • Patent number: 10843173
    Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: November 24, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Sun Hwan Hwang, Dong Hyun Ko, Jun Han Kang, Kyong Yong Cha, Joo Hyuck Lee, Hyun Seok Nam, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han, Seong Min Kim
  • Patent number: 10730809
    Abstract: A method of preparing butadiene that includes supplying butene, oxygen, nitrogen, and steam into a reactor filled with a metal oxide catalyst, and performing an oxidative dehydrogenation reaction at a temperature of 300 to 450° C. as a reaction step; after the reaction step, maintaining supplying the butene, oxygen, nitrogen, and steam within a range within which the flow rate change of the butene, oxygen, nitrogen, and steam is less than ±40%, or stopping supplying the butene, and cooling the reactor to a temperature range of 200° C. or lower and higher than 70° C. as a first cooling step; and after the first cooling step, stopping supplying the butene, oxygen, nitrogen, and steam or stopping at least supplying the butene, and cooling the reactor to a temperature of 70° C. or lower as a second cooling step.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 4, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Jun Han Kang, Kyong Yong Cha, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han
  • Patent number: 10543478
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the method of preparing a catalyst for oxidative dehydrogenation includes a first step of preparing an aqueous iron-metal precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in distilled water; a second step of obtaining a slurry of an iron-metal oxide by reacting the aqueous iron-metal precursor solution with ammonia water in a coprecipitation bath to form an iron-metal oxide (step b) and then filtering the iron-metal oxide; and a third step of heating the iron-metal oxide slurry. In accordance with the present invention, a metal oxide catalyst, as a catalyst for oxidative dehydrogenation, having a high spinel phase structure proportion may be economically prepared by a simple process.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 28, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Kyong Yong Cha, Myung Ji Suh, Dong Hyun Ko, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang, Seong Min Kim
  • Patent number: 10518250
    Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 31, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Dae Heung Choi, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Ye Seul Hwang, Sun Hwan Hwang, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han, Jun Kyu Han
  • Patent number: 10486150
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 26, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sun Hwan Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han
  • Publication number: 20190329226
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1 of the present invention, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 31, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Myung Ji SUH, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 10343958
    Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Jun Han Kang, Dong Hyun Ko, Seong Min Kim, Hyun Seok Nam, Joo Hyuck Lee, Kyong Yong Cha, Dae Heung Choi, Sang Jin Han, Jun Kyu Han, Sun Hwan Hwang, Ye Seul Hwang
  • Publication number: 20190184388
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 20, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN
  • Patent number: 10315969
    Abstract: Provided are a method of preparing a multicomponent bismuth-molybdenum composite metal oxide catalyst, and a multicomponent bismuth-molybdenum composite metal oxide catalyst prepared thereby. According to the preparation method, since the almost same structure as that of a typical quaternary bismuth-molybdenum catalyst may be obtained by performing two-step co-precipitation, i.e., primary and secondary co-precipitation, of metal components constituting the catalyst, the reduction of catalytic activity due to the deformation of the structure of the catalyst may be suppressed.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: June 11, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Ye Seul Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Jun Kyu Han, Sang Jin Han
  • Publication number: 20190144362
    Abstract: A method of preparing butadiene that includes supplying butene, oxygen, nitrogen, and steam into a reactor filled with a metal oxide catalyst, and performing an oxidative dehydrogenation reaction at a temperature of 300 to 450° C. as a reaction step; after the reaction step, maintaining supplying the butene, oxygen, nitrogen, and steam within a range within which the flow rate change of the butene, oxygen, nitrogen, and steam is less than ±40%, or stopping supplying the butene, and cooling the reactor to a temperature range of 200° C. or lower and higher than 70° C. as a first cooling step; and after the first cooling step, stopping supplying the butene, oxygen, nitrogen, and steam or stopping at least supplying the butene, and cooling the reactor to a temperature of 70° C. or lower as a second cooling step.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 16, 2019
    Inventors: Myung Ji SUH, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN
  • Publication number: 20190134612
    Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 9, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seong Min KIM
  • Publication number: 20180333702
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation having a porous structure which may easily control heat generation due to high-temperature and high-pressure reaction conditions and side reaction due to the porous structure and thus exhibits superior product selectivity, and a method of preparing the catalyst.
    Type: Application
    Filed: November 30, 2016
    Publication date: November 22, 2018
    Applicant: LG CHEM, LTD.
    Inventors: Myung Ji SUH, Yoon Jae MIN, Dong Hyun KO, Kyong Yong CHA, Se Won BAEK, Jun Kyu HAN
  • Publication number: 20180290126
    Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.
    Type: Application
    Filed: May 18, 2017
    Publication date: October 11, 2018
    Inventors: Seongmin KIM, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Jun Kyu HAN, Sun Hwan HWANG, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Ye Seul HWANG, Sang Jin HAN
  • Publication number: 20180214854
    Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 2, 2018
    Inventors: Dae Heung CHOI, Dong Hyun KO, Kyong Yong CHA, Myung Ji SUH, Ye Seul HWANG, Sun Hwan HWANG, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN, Jun Kyu HAN