Patents by Inventor Myung-Suk Chun

Myung-Suk Chun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220113243
    Abstract: Provided is an apparatus for cell particle sorting based on microfluidic-chip flow, by using a design in which Dean flow focusing occurring in a spiral channel and hydrodynamic filtration are coupled. The apparatus comprises a first substrate including a spiral channel having an inner surface and an outer surface based on a radius of curvature, a sample solution inlet, a medium inlet, and a spiral inner-outlet and a spiral outer-outlet both for discharging the particles, and a second substrate including a main channel in which the sample solution discharged from the first substrate and passing through an inter-substrate way flows and a cut-off width WC is set, a side channel allowing a medium introduced into the medium inlet to flow to focus the sample solution on a sidewall of the main channel, a plurality of branch channels connected to the sidewall of main channel and configured to receive the particles from the main channel, a main channel outlet, and at least one branch channel outlet.
    Type: Application
    Filed: October 29, 2020
    Publication date: April 14, 2022
    Inventors: Myung-Suk CHUN, Sun Mi LEE, Jae Hun KIM, Chansung PARK
  • Patent number: 10439519
    Abstract: Disclosed herein is a method and an apparatus using microfluidic channel array for converting mechanical energy into electric energy by streaming potential and streaming current caused when the electrolyte liquid flows in a charged surface due to a pressure drop. The present invention relates to a method and an apparatus for designing channels with hierarchical structure in which a primary multi-channel is provided by radially arranging one or more unit channels, and each of the unit channels includes an inflow channel, an outflow channel, and a secondary multi-channel provided by arranging one or more channels in parallel, thereby improving output power and flow stability.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: October 8, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Byoungjin Chun, Ji-Young Lee, Heesoo Jeon
  • Publication number: 20190115854
    Abstract: Disclosed herein is a method and an apparatus using microfluidic channel array for converting mechanical energy into electric energy by streaming potential and streaming current caused when the electrolyte liquid flows in a charged surface due to a pressure drop. The present invention relates to a method and an apparatus for designing channels with hierarchical structure in which a primary multi-channel is provided by radially arranging one or more unit channels, and each of the unit channels includes an inflow channel, an outflow channel, and a secondary multi-channel provided by arranging one or more channels in parallel, thereby improving output power and flow stability.
    Type: Application
    Filed: November 3, 2017
    Publication date: April 18, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk CHUN, Byoungjin Chun, Ji-Young Lee, Heesoo Jeon
  • Patent number: 9442115
    Abstract: Provided is a method of analyzing binding efficiency of adhesive nanoparticles. The method includes (a) injecting a solution containing nanoparticles into a first chamber slide, (b) evaporating only the solution from the first chamber slide into which the solution containing the nanoparticles is injected, and measuring a saturation temperature using a thermal imager while radiating light from a light source, (c) injecting cells into a second chamber slide, (d) injecting a solution containing nanoparticles into the second chamber slide in which the cells are cultured, (e) removing nanoparticles which are not bound to the cells from the second chamber slide into which the cells and the nanoparticles are injected, and (f) evaporating only the solution from the second chamber slide from which the nanoparticles are removed, and measuring a saturation temperature using a thermal image while radiating light from the light source.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 13, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Chi Woong Jang, Myung Suk Chun, Seok Lee, Jae Hun Kim, Chul Ki Kim, Deok Ha Woo, Taik Jin Lee, Young Tae Byun, Sun Ho Kim
  • Patent number: 9291172
    Abstract: An apparatus for generating pulsatile flows includes a liquid vessel capable of containing a liquid, a plurality of revolving mechanisms associated with each other, and a microchannel supplied with a liquid from the liquid vessel. As the plurality of revolving mechanisms rotate, a periodically changing pressure difference occurs between the liquid vessel and the microchannel, thereby implementing a pulsatile flow having a wave functional form in the microchannel. By applying the hydraulic head difference and controlling revolution of the revolving mechanisms based on Fourier cosine series, a minute and precise pulsatile flow of a wave functional form may be implemented by means of simple configuration and fabrication, which may not easily obtained by a conventional pump.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 22, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Kwang Seok Kim, Hyoung-Juhn Kim, Young Tae Byun
  • Patent number: 9188484
    Abstract: Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 17, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Yong Soo Kim, Min Ah Seo, Jae Hun Kim, Min Chul Park, Sun Ho Kim, Deok Ha Woo, Seok Lee, Taik Jin Lee, Myung Suk Chun, Woon Jo Cho
  • Publication number: 20150192463
    Abstract: Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 9, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min JHON, Yong Soo KIM, Min Ah SEO, Jae Hun KIM, Min Chul PARK, Sun Ho KIM, Deok Ha WOO, Seok LEE, Taik Jin LEE, Myung Suk CHUN, Woon Jo CHO
  • Publication number: 20140186851
    Abstract: Provided is a method of analyzing binding efficiency of adhesive nanoparticles. The method includes (a) injecting a solution containing nanoparticles into a first chamber slide, (b) evaporating only the solution from the first chamber slide into which the solution containing the nanoparticles is injected, and measuring a saturation temperature using a thermal imager while radiating light from a light source, (c) injecting cells into a second chamber slide, (d) injecting a solution containing nanoparticles into the second chamber slide in which the cells are cultured, (e) removing nanoparticles which are not bound to the cells from the second chamber slide into which the cells and the nanoparticles are injected, and (f) evaporating only the solution from the second chamber slide from which the nanoparticles are removed, and measuring a saturation temperature using a thermal image while radiating light from the light source.
    Type: Application
    Filed: May 16, 2013
    Publication date: July 3, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min JHON, Chi Woong JANG, Myung Suk CHUN, Seok LEE, Jae Hun KIM, Chul Ki KIM, Deok Ha WOO, Taik Jin LEE, Young Tae BYUN, Sun Ho KIM
  • Publication number: 20140144513
    Abstract: An apparatus for generating pulsatile flows includes a liquid vessel capable of containing a liquid, a plurality of revolving mechanisms associated with each other, and a microchannel supplied with a liquid from the liquid vessel. As the plurality of revolving mechanisms rotate, a periodically changing pressure difference occurs between the liquid vessel and the microchannel, thereby implementing a pulsatile flow having a wave functional form in the microchannel. By applying the hydraulic head difference and controlling revolution of the revolving mechanisms based on Fourier cosine series, a minute and precise pulsatile flow of a wave functional form may be implemented by means of simple configuration and fabrication, which may not easily obtained by a conventional pump.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 29, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Kwang Seok Kim, Hyoung-Juhn Kim, Young Tae Byun
  • Patent number: 8025776
    Abstract: Embodiments of the present invention may provide a microchip applicable to an electrophoresis employing UV detection and a method of manufacturing the same. The microchip of the present invention has a glass channel plate, which is formed on an upper surface thereof with a loading channel and a separation channel and is provided on the upper surface thereof with an optical slit layer made of silicon except the channel region, and a glass reservoir plate, which is formed with sample solution reservoirs and buffer solution reservoirs. The loading channel and the separation channel are formed on the channel plate by deep reactive ion etching. The sample solution reservoirs and the buffer solution reservoirs are formed in the reservoir plate by sand blasting. The channel plate and the reservoir plate are combined by anodic bonding the optical slit layer and the reservoir plate. Electrodes for sample and electrodes for buffer are deposited by sputtering Pt with a shadow mask after anodic bonding.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 27, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, Tae Ha Kim
  • Patent number: 7709126
    Abstract: Disclosed is a micro power cell capable of being applied as an energy source and utilizing a streaming potential phenomenon occurring in accordance with an electrokinetic principle when an electrolyte aqueous solution flows in the microchannels piled up in several layers. The streaming potential cell consists of a PDMS microfluidic-chip fabricated by MEMS process as well as micromachining technology. The microfluidic-chip is formed with multi microchannels radially arranged in parallel with each other around a center of a disk at a regular interval. The disk type multi microchannel can achieve uniform inflow and outflow effects. According to the invention, there is provided a cell device comprising a pile-up chip having a number of disk type microfluidic-chips with the optimal structure of flow-in and flow-out of a fluid, a distributor, a collector, an electrode insertion part, etc.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: May 4, 2010
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, Min Suk Shim, Dae Ki Choi
  • Patent number: 7674545
    Abstract: The invention relates to a new micro power cell applying the microfluidic-chip with multi-channel type. The streaming potential is the main thrust, which is created by Helmholtz-Smoluchowski's electrokinetic principle when electrolytic solution flows through a microchannel. The microfluidic-chip comprises an inflow port, a distributor, a multi-channel, a collector, an outflow port, and a pair of electrodes. The present invention could be applied to a new power source of clean energy.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 9, 2010
    Assignee: Korea Institute of Science & Technology
    Inventors: Myung-Suk Chun, Nak Won Choi
  • Publication number: 20090107844
    Abstract: Embodiments of the present invention may provide a microchip applicable to an electrophoresis employing UV detection and a method of manufacturing the same. The microchip of the present invention has a glass channel plate, which is formed on an upper surface thereof with a loading channel and a separation channel and is provided on the upper surface thereof with an optical slit layer made of silicon except the channel region, and a glass reservoir plate, which is formed with sample solution reservoirs and buffer solution reservoirs. The loading channel and the separation channel are formed on the channel plate by deep reactive ion etching. The sample solution reservoirs and the buffer solution reservoirs are formed in the reservoir plate by sand blasting. The channel plate and the reservoir plate are combined by anodic bonding the optical slit layer and the reservoir plate. Electrodes for sample and electrodes for buffer are deposited by sputtering Pt with a shadow mask after anodic bonding.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 30, 2009
    Inventors: Myung-Suk Chun, Tae Ha Kim
  • Publication number: 20070099059
    Abstract: Disclosed is a micro power cell capable of being applied as an energy source and utilizing a streaming potential phenomenon occurring in accordance with an electrokinetic principle when an electrolyte aqueous solution flows in the microchannels piled up in several layers. The streaming potential cell consists of a PDMS microfluidic-chip fabricated by MEMS process as well as micromachining technology. The microfluidic-chip is formed with multi microchannels radially arranged in parallel with each other around a center of a disk at a regular interval. The disk type multi microchannel can achieve uniform inflow and outflow effects. According to the invention, there is provided a cell device comprising a pile-up chip having a number of disk type microfluidic-chips with the optimal structure of flow-in and flow-out of a fluid, a distributor, a collector, an electrode insertion part, etc.
    Type: Application
    Filed: January 31, 2006
    Publication date: May 3, 2007
    Inventors: Myung-Suk Chun, Min Shim, Dae Choi
  • Patent number: 7045482
    Abstract: The present invention relates to a method for preparing a heteropolyacid catalyst and method for preparing methacrylic acid using thereof. More particularly, the present invention relates to a method for preparing heteropolyacid catalyst, which is produced by the recrystallization of a heteropolyacid and/or its salt dissolved in a basic organic solvent and heat-treatment, and further to a method for preparing metachrylic acid using thereof, wherein the use of the heteropolyacid catalyst increases the activity of oxidation reaction induced by the modified electronic properties of heteropolyanions and provides high efficiency production of methacrylic acid from methacrolein, since the basic property of solvent inhibits peculiar acidic property of heteropolyacid.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 16, 2006
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, In Kyu Song, Suk Woo Nam
  • Publication number: 20060083661
    Abstract: The invention relates to a new micro power cell applying the microfluidic-chip with multi-channel type. The streaming potential is the main thrust, which is created by Helmholtz-Smoluchowski's electrokinetic principle when electrolytic solution flows through a microchannel. The microfluidic-chip comprises an inflow port, a distributor, a multi-channel, a collector, an outflow port, and a pair of electrodes. The present invention could be applied to a new power source of clean energy.
    Type: Application
    Filed: October 19, 2004
    Publication date: April 20, 2006
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Nak Choi
  • Patent number: 6939719
    Abstract: The present invention relates to an apparatus for monitoring the progress of membrane fouling that occurs on pores as well as on the surface of a membrane by means of variations of zeta potential (?) of a hollow-fiber membrane according to time passage of filtration of a suspension, wherein colloid particles, biopolymers and other inorganic particles are dispersed, and the method thereof. Moreover, the present invention also relates to a method to identify the effect of concentration polarization layer and cake layer which can vary according to the axial position of a hollow-fiber and the developing progress of a membrane fouling by measuring the position-dependent zeta potential of the hollow-fiber membrane.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: September 6, 2005
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, Jae-Jin Kim, Sang Yup Lee
  • Publication number: 20040266017
    Abstract: The present invention relates to an apparatus for monitoring the progress of membrane fouling that occurs on pores as well as on the surface of a membrane by means of variations of zeta potential (&zgr;) of a hollow-fiber membrane according to time passage of filtration of a suspension, wherein colloid particles, biopolymers and other inorganic particles are dispersed, and the method thereof. Moreover, the present invention also relates to a method to identify the effect of concentration polarization layer and cake layer which can vary according to the axial position of a hollow-fiber and the developing progress of a membrane fouling by measuring the position-dependent zeta potential of the hollow-fiber membrane.
    Type: Application
    Filed: April 12, 2004
    Publication date: December 30, 2004
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung-Suk Chun, Jae-Jin Kim, Sang Yup Lee
  • Patent number: 6779384
    Abstract: A particle diffusion coefficient measuring device is provided with a hollow-fiber including micropores on its surface. The hollow-fiber provides a passage for particle suspension to transport through. The device is also provided with a fluid passage formed outside the hollow-fiber to communicate with the hollow-fiber via the micropores. The fluid passage provides a passage for an electrolyte solution to transport through in such a manner that the electrolyte solution is delivered to flow in the same direction as that of the particle suspension and is discharged from the fluid passage. The device detects a concentration change of the particles in the electrolyte solution discharged out of the fluid passage over a time change and calculates a particle diffusion coefficient by using the concentration change of the particles over the time change.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: August 24, 2004
    Assignee: Korea Institute of Science and Technology
    Inventor: Myung-Suk Chun
  • Publication number: 20040093934
    Abstract: A particle diffusion coefficient measuring device is provided with a hollow-fiber including micropores on its surface. The hollow-fiber provides a passage for particle suspension to transport through. The device is also provided with a fluid passage formed outside the hollow-fiber to communicate with the hollow-fiber via the micropores. The fluid passage provides a passage for an electrolyte solution to transport through in such a manner that the electrolyte solution is delivered to flow in the same direction as that of the particle suspension and is discharged from the fluid passage. The device detects a concentration change of the particles in the electrolyte solution discharged out of the fluid passage over a time change and calculates a particle diffusion coefficient by using the concentration change of the particles over the time change.
    Type: Application
    Filed: January 8, 2003
    Publication date: May 20, 2004
    Inventor: Myung-Suk Chun