Patents by Inventor Nada El-Zein

Nada El-Zein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8170404
    Abstract: A bubbler chamber assembly comprising one chamber or two or more chambers connected in series, all chambers being in substantially vertical orientation. A solid or liquid source of the compound is contained in the chamber or chambers. The ratio between the length of the chamber or combined length of chambers connected in series with respect to the direction of flow of the carrier gas through the chamber or chambers and the average diameter equivalent of the cross section of the chamber or chambers with respect to the direction of flow of the carrier gas through the chamber or chambers is not less than about 6:1.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: May 1, 2012
    Assignee: Akzo Nobel N.V.
    Inventors: Nam Hung Tran, Dennis L. Deavenport, Taeho Ko, Nada El-Zein
  • Publication number: 20070221127
    Abstract: A bubbler chamber assembly comprising one chamber or two or more chambers connected in series, all chambers being in substantially vertical orientation. A solid or liquid source of the compound is contained in the chamber or chambers. The ratio between the length of the chamber or combined length of chambers connected in series with respect to the direction of flow of the carrier gas through the chamber or chambers and the average diameter equivalent of the cross section of the chamber or chambers with respect to the direction of flow of the carrier gas through the chamber or chambers is not less than about 6:1.
    Type: Application
    Filed: May 17, 2005
    Publication date: September 27, 2007
    Applicant: Akzo Nobel N.V.
    Inventors: Nam Tran, Dennis Deavenport, Taeho Ko, Nada El-Zein
  • Patent number: 7105866
    Abstract: High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: September 12, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Nada El-Zein, Jamal Ramdani, Kurt Eisenbeiser, Ravindranath Droopad
  • Publication number: 20050056210
    Abstract: High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
    Type: Application
    Filed: August 5, 2004
    Publication date: March 17, 2005
    Applicant: MOTOROLA
    Inventors: Nada El-Zein, Jamal Ramdani, Kurt Eisenbeiser, Ravindranath Droopad
  • Patent number: 6594478
    Abstract: A self oscillating mixer circuit includes a dual gate FET, an NDR device coupled to a first gate of the FET, and a first bias input circuit adapted to couple a first bias voltage across the NDR device. The first bias voltage controls operation of the NDR device within an NDR region of the V-I characteristic curve of the NDR device so that oscillations occur in the NDR device and the FET. The first bias input circuit is adjustable to adjust the applied first bias voltage so as to control frequency and amplitude of the oscillations. An RF input terminal and a second bias input circuit are coupled to supply a second bias voltage at the other gate terminal, which biases the FET at maximum gain so that RF signals applied to the RF input terminal are mixed with the oscillations.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: July 15, 2003
    Assignee: Motorola, Inc.
    Inventors: Vijay Nair, Nada El Zein, Herbert Goronkin
  • Patent number: 6590236
    Abstract: High quality epitaxial layers of compound semiconductor materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: July 8, 2003
    Assignee: Motorola, Inc.
    Inventors: Nada El-Zein, Jamal Ramdani, Kurt Eisenbeiser, Ravindranath Droopad
  • Publication number: 20030122130
    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large GaAs wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer is spaced apart from a GaAs substrate by a decoupling layer. The decoupling layer dissipates strain and permits the growth of a high quality monocrystalline accommodating buffer layer. The accommodating buffer layer is lattice matched to the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying GaAs substrate is taken care of by the decoupling layer.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 3, 2003
    Applicant: MOTOROLA, Inc.
    Inventors: Alexander A. Demkov, Nada A. El-Zein
  • Publication number: 20020132226
    Abstract: An improved and novel ingestible capsule and method for determining medical information from within the alimentary canal of a human or an animal utilizing the ingestible capsule including a non-digestible outer shell that is configured to pass through the alimentary canal. Housed within the non-digestible outer shell is a sensor membrane that is exposed through a portion of the non-digestible outer shell. The sensor membrane is characterized as detecting and identifying predetermined detectable information. Further housed within the non-digestible outer shell are an electronic device that alters its electronic properties in the presence of specific information obtained by the sensor membrane from within the alimentary canal, a bio-sensing circuit that turns on a power source and a low frequency transducer in response to the signal from the electronic device. The low frequency transducer sends a signal of the changed electronic properties to a receiver positioned outside the body.
    Type: Application
    Filed: May 6, 2002
    Publication date: September 19, 2002
    Inventors: Vijay Nair, Piotr Grodzinski, Nada El-Zein, Herbert Goronkin
  • Publication number: 20020024090
    Abstract: An integrated smart power circuit including a power semiconductor device fabricated on a conducting substrate with a source positioned adjacent the upper surface of the substrate, a control terminal between the upper and lower surfaces, and a drain positioned adjacent the lower surface of the substrate. A high resistance layer is formed on a portion of the upper surface of the substrate, either directly overlying or adjacent to the power device, and doped semiconductor material is positioned on the high resistance layer. Control circuitry is formed in the doped semiconductor material. The high resistance layer can be conveniently formed by growing a layer of AlAs and growing doped layers on the AlAs. The AlAs can be easily oxidized thereafter.
    Type: Application
    Filed: July 30, 2001
    Publication date: February 28, 2002
    Inventors: Charles E. Weitzel, Nada El-Zein
  • Patent number: 6255710
    Abstract: An integrated smart power circuit including a power semiconductor device fabricated on a conducting substrate with a source positioned adjacent the upper surface of the substrate, a control terminal between the upper and lower surfaces, and a drain positioned adjacent the lower surface of the substrate. A high resistance layer is formed on a portion of the upper surface of the substrate, either directly overlying or adjacent to the power device, and doped semiconductor material is positioned on the high resistance layer. Control circuitry is formed in the doped semiconductor material. The high resistance layer can be conveniently formed by growing a layer of AlAs and growing doped layers on the AlAs. The AlAs can be easily oxidized thereafter.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: July 3, 2001
    Assignee: Motorola, Inc.
    Inventors: Charles E. Weitzel, Nada El-Zein
  • Patent number: 6204513
    Abstract: A heterostructure interband tunneling diode includes a contact layer comprising indium gallium arsenide of a first conductivity type, an injection layer comprising indium gallium arsenide of a second conductivity type, a first doped layer of the first conductivity type positioned adjacent to the contact layer, and a second doped layer of a second conductivity type juxtaposed between the first doped layer and the injection layer, wherein at least one of the first and second tunnel barrier layers comprises indium aluminium arsenide. A second embodiment includes a doped layer of the first conductivity type positioned adjacent to the contact layer, and a barrier layer positioned adjacent to the injection layer, and a quantum well layer comprising indium gallium arsenide juxtaposed between the doped layer and the barrier layer, wherein at least one of the doped and barrier layers comprises indium aluminium arsenide.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: March 20, 2001
    Assignee: Motorola, Inc.
    Inventors: Nada El-Zein, Jonathan Lewis, Mandar R. Deshpande
  • Patent number: 5942952
    Abstract: A VCO includes a transistor having a plurality of negative differential resistance devices coupled in series to the source terminal of the transistor, with each of the devices having a negative differential resistance operating region. Biasing circuits are coupled to the drain and gate terminals along with operating voltages which set the oscillator to operating in a negative differential resistance region of at least one of the negative differential resistance devices so that oscillations of a selected frequency are produced at an output terminal. The transistor, the plurality of N devices, the DC biasing circuits, and the operating voltages are connected so that the oscillator negative differential resistance operating region is greater than N times as wide as each of the device negative differential operating regions individually.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: August 24, 1999
    Assignee: Motorola, Inc.
    Inventors: Vijay K. Nair, Nada El-Zein, Kumar Shiralagi, George N. Maracas, Herbert Goronkin
  • Patent number: 5425043
    Abstract: In a form of the disclosure an array of coupled cavities (called minicavities) of a QWH semiconductor laser are defined by a native oxide of an aluminum-bearing III-V semiconductor material and are arranged serially end-to-end along the longitudinal direction. The native oxide confines the injected carriers and optical field within the cavities, resulting in reflection and optical feedback distributed periodically along the laser stripe. Single-longitudinal-mode operation is exhibited over an extended range. In a further form of the disclosure, two linear arrays of end-coupled minicavities are arranged side by side to obtain a two dimensional array, with resultant lateral coupling between the linear arrays. The two dimensional array exhibits mode switching and multiple switching in the light power (L) versus current (I) characteristic (L-I) with increasing current. In another form of the disclosure, a stripe laser is transversely coupled (or side-coupled) with a linear array of end-coupled minicavities.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: June 13, 1995
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nick Holonyak, Jr., Nada El-Zein, Fred A. Kish
  • Patent number: 5353295
    Abstract: In a form of the disclosure an array of coupled cavities (called minicavities) of a QWH semiconductor laser are defined by a native oxide of an aluminum-bearing III-V semiconductor material and are arranged serially end-to-end along the longitudinal direction. The native oxide confines the injected carriers and optical field within the cavities, resulting in reflection and optical feedback distributed periodically along the laser stripe. Single-longitudinal-mode operation is exhibited over an extended range. In a further form of the disclosure, two linear arrays of end-coupled minicavities are arranged side by side to obtain a two dimensional array, with resultant lateral coupling between the linear arrays. The two dimensional array exhibits mode switching and multiple switching in the light power (L) versus current (I) characteristic (L-I) with increasing current. In another form of the disclosure, a stripe laser is transversely coupled (or side-coupled) with a linear array of end-coupled minicavities.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: October 4, 1994
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nick Holonyak, Jr., Nada El-Zein, Fred A. Kish