Patents by Inventor Nadia Galbiati

Nadia Galbiati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6624015
    Abstract: The manufacturing method comprises, in sequence, the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a layer of silicide on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining stack gate regions and HV gate regions of high-voltage transistors; and forming HV source and drain regions and cell regions.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 23, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6576517
    Abstract: Presented is a method for obtaining a multi-level ROM in a dual gate EEPROM process flow. The method begins with, on a semiconductor substrate, defining active areas respectively for transistors of ROM cells, transistors of electrically erasable non-volatile memory cells, and additional transistors of the storage circuitry. Then, integrated capacitors are integrated in the storage circuit. According to this method, during the implanting step for forming integrated capacitors, at least an active area of the ROM cell is similarly implanted.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: June 10, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6573130
    Abstract: A process that provides for the manufacture of LV transistors with salicidated junctions on first areas of a substrate, HV transistors on second areas, and memory cells on third areas. The process includes forming LV oxide regions and LV gate regions on the first areas, HV oxide regions on the second areas, selection oxide regions, tunnel oxide regions, and matrix oxide regions on the third areas; forming floating gate regions and insulating regions on the tunnel oxide regions and the matrix oxide regions; forming first LV source and drain regions laterally to the LV gate regions; forming silicide regions on the first source and drain regions and on the LV gate regions; forming semiconductor material regions completely covering the second and third areas; and at the same time forming HV gate regions on the HV oxide regions, forming selection gate regions on the selection oxide regions, and forming control gate regions on the insulating regions through shaping of the semiconductor material regions.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: June 3, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6521957
    Abstract: The invention relates to a method of producing a multi-level memory of the ROM type in a CMOS process of the dual gate type. Specifically, some of the transistors of the ROM cells have their polysilicon layers masked and the ROM cells are then implanted by a first dopant species in the active areas of the exposed transistors. Then the masks are removed from the polysilicon layer, and a second dopant species is implanted in said previously covered layer.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: February 18, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6444526
    Abstract: A simplified non-DSCP process for the definition of the tunnel area in nonvolatile memory cells with semi-conductor floating gates is presented. The memory cells are non-aligned and are incorporated in a matrix of cells and have associated control circuitry. In additional, to each cell a selection transistor is associated. The process includes at least the following phases: growth or deposition of a dielectric layer of gate of the sensing transistor and of the cells; tunnel mask for defining the area of tunnel; cleaning etching of the dielectric layer of gate in the area of tunnel up to the surface of the semiconductor; and growth of tunnel oxide. Advantageously, the tunnel mask is extended above the region occupied by the selection transistor.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: September 3, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6420769
    Abstract: A manufacturing method having the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining salicided HV gate regions of high voltage transistors; and forming HV source and drain regions not directly overlaid by silicide portions.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: July 16, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Nadia Galbiati, Giovanna Dalla Libera, Bruno Vajana
  • Patent number: 6414349
    Abstract: To increase the facing surface and thus the coupling between the floating gate and control gate regions of a memory cell, the floating gate and control gate regions have a width that is not constant in different section planes parallel to a longitudinal section plane extending through the source and drain regions of the cell. In particular, the width of the floating gate and control gate regions is smallest in the longitudinal section plane and increases linearly in successive parallel section planes moving away from the longitudinal section plane.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: July 2, 2002
    Assignee: STMicroelectronics S.r.L.
    Inventors: Giovanna Dalla Libera, Matteo Patelmo, Bruno Vajana, Nadia Galbiati
  • Patent number: 6396101
    Abstract: A method for manufacturing electronic devices, such as memory cells and LV transistors, with salicided junctions, that includes: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining floating gate regions on first areas, LV gate regions on second areas of a substrate, and undefined regions on the first and third areas of the substrate; forming first cell source regions laterally to the floating gate regions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining HV gate regions on the third areas, and selection gate regions on the first areas; forming source regions laterally to the selection gate regions, and source and drain regions laterally to the HV gate regions.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: May 28, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Publication number: 20020040993
    Abstract: The manufacturing method comprises, in sequence, the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a layer of silicide on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining stack gate regions and HV gate regions of high-voltage transistors; and forming HV source and drain regions and cell regions.
    Type: Application
    Filed: November 9, 2001
    Publication date: April 11, 2002
    Applicant: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6351008
    Abstract: The manufacturing method comprises, in sequence, the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a layer of silicide on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining stack gate regions and HV gate regions of high-voltage transistors; and forming HV source and drain regions and cell regions.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: February 26, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6300181
    Abstract: A manufacturing process that includes, in succession: depositing a gate oxide layer on a silicon substrate defining a transistor area and a resistor area; depositing a multicrystal silicon layer on the gate oxide layer; removing selective portions of the multicrystal silicon layer to form a gate region over the transistor area and a protective region completely covering the resistor area; forming source and drain regions in the transistor area, laterally to the gate region; forming silicide regions on and in direct contact with the source and drain regions, the gate region and the protective region; removing selective portions of the protective region to form a delimitation ring; and implanting ionic dopants in the resistor area, inside the area defined by the protective ring, to form a lightly doped resistor which has no silicide regions directly on it.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: October 9, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Nadia Galbiati, Giovanna Dalla Libera, Bruno Vajana
  • Publication number: 20010024861
    Abstract: A manufacturing method having the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining salicided HV gate regions of high voltage transistors; and forming HV source and drain regions not directly overlaid by silicide portions.
    Type: Application
    Filed: May 18, 2001
    Publication date: September 27, 2001
    Inventors: Matteo Patelmo, Nadia Galbiati, Giovanna Dalla Libera, Bruno Vajana
  • Publication number: 20010021556
    Abstract: A method for manufacturing electronic devices, such as memory cells and LV transistors, with salicided junctions, that includes: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining floating gate regions on first areas, LV gate regions on second areas of a substrate, and undefined regions on the first and third areas of the substrate; forming first cell source regions laterally to the floating gate regions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining HV gate regions on the third areas, and selection gate regions on the first areas; forming source regions laterally to the selection gate regions, and source and drain regions laterally to the HV gate regions.
    Type: Application
    Filed: April 16, 2001
    Publication date: September 13, 2001
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6284607
    Abstract: In a CMOS process for making dual gate transistors with silicide, high-voltage transistors with drain extensions are produced by first defining on a semiconductor substrate, active areas for low-voltage and high-voltage transistors. A gate oxide layer and a layer of polysilicon is deposited over the substrate, which is masked and etched to produce gates for the transistors. A dielectric layer is deposited to produce spacers to the sides of the transistor gate regions, then a mask partially shields the dielectric layer over the junctions of the high-voltage transistors while the spacers are being formed. Finally, the substrate is doped in the gate and active areas of the high-voltage transistor, and in the gate and active areas of the low-voltage transistor, except those areas that are blocked by the spacers.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: September 4, 2001
    Assignee: STMicroelectronics S.R.L.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6281077
    Abstract: A method for manufacturing electronic devices, such as memory cells and LV transistors, with salicided junctions, that includes: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining floating gate regions on first areas, LV gate regions on second areas of a substrate, and undefined regions on the first and third areas of the substrate; forming first cell source regions laterally to the floating gate regions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining HV gate regions on the third areas, and selection gate regions on the first areas; forming source regions laterally to the selection gate regions, and source and drain regions laterally to the HV gate regions.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: August 28, 2001
    Assignee: STMicroelectronics S.r. l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6274411
    Abstract: A method of forming source and drain regions for LV transistors that includes the steps of forming sacrificial spacers laterally to LV gate regions; forming LV source and drain regions in a self-aligned manner with the sacrificial spacers; removing the sacrificial spacers; forming HV gate regions of HV transistors; forming gate regions of selection transistors; forming control gate regions of memory transistors; simultaneously forming LDD regions self-aligned with the LV gate regions, HV source and drain regions self-aligned with the HV gate regions, source and drain regions self-aligned with the selection gate region and floating gate region; depositing a dielectric layer; covering the HV and memory areas with a protection silicide mask; anisotropically etching the dielectric layer, to form permanent spacers laterally to the LV gate regions; removing the protection silicide mask; and forming silicide regions on the LV source and drain regions and on the LV gate regions.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: August 14, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Bruno Vajana, Giovanna Dalla Libera, Carlo Cremonesi, Nadia Galbiati
  • Patent number: 6251728
    Abstract: A manufacturing method having the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining salicided HV gate regions of high voltage transistors; and forming HV source and drain regions not directly overlaid by silicide portions.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: June 26, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Nadia Galbiati, Giovanna Dalla Libera, Bruno Vajana
  • Publication number: 20010001721
    Abstract: The invention relates to a method of producing a multi-level memory of the ROM type in a CMOS process of the dual gate type. Specifically, some of the transistors of the ROM cells have their polysilicon layers masked and the ROM cells are then implanted by a first dopant species in the active areas of the exposed transistors. Then the masks are removed from the polysilicon layer, and a second dopant species is implanted in said previously covered layer.
    Type: Application
    Filed: December 8, 2000
    Publication date: May 24, 2001
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana
  • Patent number: 6177313
    Abstract: The invention relates to a method of producing a multi-level memory of the ROM type in a CMOS process of the dual gate type. Specifically, some of the transistors of the ROM cells have their polysilicon layers masked and the ROM cells are then implanted by a first dopant species in the active areas of the exposed transistors. Then the masks are removed from the polysilicon layer, and a second dopant species is implanted in said previously covered layer.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: January 23, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Giovanna Dalla Libera, Nadia Galbiati, Bruno Vajana