Patents by Inventor Nadim Haddad

Nadim Haddad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8389370
    Abstract: An enhanced shallow trench isolation method for fabricating radiation tolerant integrated circuit devices is disclosed. A layer of pad oxide is first deposited on a semiconductor substrate. A layer of pad nitride is then deposited on the pad oxide layer. A trench is defined within the semiconductor substrate by selectively etching the pad nitride layer, the pad oxide layer, and the semiconductor substrate. Boron ions are then implanted into both the bottom and along the sidewalls of the trench. Subsequently, a trench plug is formed within the trench by depositing an insulating material into the trench and by removing an excess portion of the insulating material. A p-well is implanted to a depth just below the depth of the bottom of the trench. This helps to keep the threshold voltage of the IC device below the trench at a high level, and thereby keep post-radiation leakage low. Then, an electrically neutral species is implanted into the wafer.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: March 5, 2013
    Assignee: Schilmass Co. L.L.C.
    Inventors: Nadim Haddad, Frederick Brady, Jonathon Maimon
  • Patent number: 7324804
    Abstract: This application is directed to systems and methods for managing wireless network sensors. A plurality of wireless network sensors in the network region are identified. For each of the network sensors in the plurality of wireless network sensors, a designation of primary or secondary with respect to the network region is selected. A collection agent for the selected network region is determined. An indicator of the determined collection agent is communicated to the plurality of wireless network sensors in the network region. Scan data for the network region is received from the collection agent.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: January 29, 2008
    Assignee: AirDefense, Inc.
    Inventors: Scott E. Hrastar, Issam Nadim Haddad
  • Publication number: 20060245124
    Abstract: A method for connecting circuit elements within an integrated circuit for reducing single-event upsets is disclosed. The integrated circuit includes a first and second circuit elements that are substantially identical to each other. In order to reduce the single-event upsets to the first and second circuit elements, each of the first and second circuit elements is divided into a first sub-element and a second sub-element. The first sub-element of the first circuit element is connected to the second sub-element of the second circuit element. The second sub-element of the first circuit element is connected to the first sub-element of the second circuit element. As a result, the nodal spacings between the sub-elements within the first and second circuit elements are effectively increased without demanding additional real estate.
    Type: Application
    Filed: April 27, 2005
    Publication date: November 2, 2006
    Inventors: Nadim Haddad, Neil Wood, Adam Bumgarner, Wayne Neiderer, Shankarnarayana Ramaswamy, Scott Doyle, Tri-Minh Hoang
  • Publication number: 20050275069
    Abstract: An enhanced shallow trench isolation method for fabricating radiation tolerant integrated circuit devices is disclosed. A layer of pad oxide is first deposited on a semiconductor substrate. A layer of pad nitride is then deposited on the pad oxide layer. A trench is defined within the semiconductor substrate by selectively etching the pad nitride layer, the pad oxide layer, and the semiconductor substrate. Boron ions are then implanted into both the bottom and along the sidewalls of the trench. Subsequently, a trench plug is formed within the trench by depositing an insulating material into the trench and by removing an excess portion of the insulating material A p-well is implanted to a depth just below the depth of the bottom of the trench. This helps to keep the threshold voltage of the IC device below the trench at a high level, and thereby keep post-radiation leakage low. Then, an electrically neutral species is implanted into the wafer.
    Type: Application
    Filed: November 25, 2002
    Publication date: December 15, 2005
    Inventors: Nadim Haddad, Frederick Brady, Jonathon Maimon
  • Patent number: 6762128
    Abstract: A method and an apparatus for manufacturing, via a single fabrication line, circuits that are radiation tolerant and also circuits that are radiation intolerant. When production calls for radiation-tolerant circuits, low-pressure chemical vapor deposition is advantageously used to deposit an electrically-insulating material, such as silicon dioxide, in trenches to provide electrical isolation between adjacent semiconductor devices. When production requires radiation-intolerant circuits, as may be required for export, then the trenches are filled via a procedure that deposits an electrically-insulating material that, on exposure to ionizing radiation, generates a suitably large amount of “positive charge traps.” One procedure suitable for creating such positive charge traps is high-density plasma chemical vapor deposition (HDPCVD).
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 13, 2004
    Assignee: BAE Systems
    Inventors: Paul A. Bernkopf, Frederick T. Brady, Nadim Haddad
  • Patent number: 6716728
    Abstract: A radiation hardened silicon-on-insulator transistor is disclosed. A dielectric layer is disposed on a substrate, and a transistor structure is disposed on the dielectric layer. The transistor structure includes a body region, a source region, a drain region, and a gate layer. The body region is formed on a first surface portion of the dielectric layer, the source region is formed on a second surface portion of the dielectric layer contiguous with the first surface portion, the drain region is formed on a third surface portion of the dielectric layer contiguous with the first surface portion, and the gate layer overlies the body region and being operative to induce a channel in that portion of the body region disposed between and adjoining the source region and the drain region. In addition, multiple diffusions are placed across two edges of the source region.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: April 6, 2004
    Assignee: BAE Systems Information and Electronic Systems Integration, Inc.
    Inventors: Robert Dockerty, Nadim Haddad, Michael J. Hurt, Frederick T. Brady
  • Patent number: 6717233
    Abstract: A method for fabricating resistors within a semiconductor integrated circuit device is disclosed. A resistor is fabricated by first depositing a passivation layer on a semiconductor substrate having multiple transistors previously formed thereon. Next, a first contact window and a second contact window are formed through the first passivation layer at a first contact location and a second contact location, respectively. The first and second contact windows are then filled with metal, such as tungsten, and the metal at the first and second contact windows is planarized to form a first bottom contact and a second bottom contact, respectively. A resistive film, such as polysilicon, subsequently deposited over the first passivation layer. Next, a second passivation layer is formed over the resistive film. Finally, a first top contact and a second top contact are formed to respectively connect the first bottom contact and the second bottom contact to the resistive film.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: April 6, 2004
    Assignee: BAE Systems Information and Electronic Systems Integration, Inc.
    Inventors: Nadim Haddad, Charles N. Alcorn, Jonathan Maimon, Leonard R. Rockett, Scott Doyle
  • Publication number: 20020182884
    Abstract: A method and an apparatus for manufacturing, via a single fabrication line, circuits that are radiation tolerant and also circuits that are radiation intolerant. When production calls for radiation-tolerant circuits, low-pressure chemical vapor deposition is advantageously used to deposit an electrically-insulating material, such as silicon dioxide, in trenches to provide electrical isolation between adjacent semiconductor devices. When production requires radiation-intolerant circuits, as may be required for export, then the trenches are filled via a procedure that deposits an electrically-insulating material that, on exposure to ionizing radiation, generates a suitably large amount of “positive charge traps.” One procedure suitable for creating such positive charge traps is high-density plasma chemical vapor deposition (HDPCVD).
    Type: Application
    Filed: June 20, 2002
    Publication date: December 5, 2002
    Inventors: Paul A. Bernkopf, Frederick T. Brady, Nadim Haddad
  • Patent number: 6448862
    Abstract: A single event effect immune oscillator circuit is disclosed. The single event upset immune oscillator circuit includes an odd number of logic circuit blocks connecting in series to provide a continuous pulse signal at an output of the oscillator circuit. Each logic circuit block has a first input, a second input, and an output. For a series of logic circuit blocks i, where i=1 to n (n is an odd number), the output of a logic circuit block i is connected to a first input of a logic circuit block i+1. The output of the logic circuit block i is also connected to a first input of a logic circuit block i+x, wherein x is an odd number greater than one and less than or equal to n.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: September 10, 2002
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph Yoder, Nadim Haddad
  • Patent number: 6441440
    Abstract: Semiconductor devices and integrated circuits that benefit from the advantages of contemporary processing technologies yet are irreparably damaged by ionizing radiation, and methods for making the same. Transistors that are particularly intolerant to ionizing radiation have a gate insulator that includes a portion of a screen layer that is used in conjunction with N- and P-well implantation. After the implantation step, the screen layer exhibits significantly degraded tolerance to ionizing radiation, so that a gate insulator incorporating a portion of such a screen layer will likewise be radiation intolerant. By selectively removing portions of the screen layer, a method is provided for co-locating radiation-tolerant and radiation-intolerant transistors on a substrate. A radiation intolerant integrated circuit is formed by adding “safeguard devices” to an integrated circuit.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: August 27, 2002
    Assignee: BAE SYSTEMS Information and Electronic Systems Integration Inc.
    Inventors: Frederick T. Brady, Nadim Haddad, Murty S. Polavarapu
  • Publication number: 20020096719
    Abstract: A radiation hardened silicon-on-insulator transistor is disclosed. A dielectric layer is disposed on a substrate, and a transistor structure is disposed on the dielectric layer. The transistor structure includes a body region, a source region, a drain region, and a gate layer. The body region is formed on a first surface portion of the dielectric layer, the source region is formed on a second surface portion of the dielectric layer contiguous with the first surface portion, the drain region is formed on a third surface portion of the dielectric layer contiguous with the first surface portion, and the gate layer overlies the body region and being operative to induce a channel in that portion of the body region disposed between and adjoining the source region and the drain region. In addition, multiple diffusions are placed across two edges of the source region.
    Type: Application
    Filed: March 5, 2002
    Publication date: July 25, 2002
    Applicant: Lockheed Martin Corporation
    Inventors: Robert Dockerty, Nadim Haddad, Michael J. Hurt, Frederick T. Brady
  • Patent number: 6399989
    Abstract: A radiation hardened silicon-on-insulator transistor is disclosed. A dielectric layer is disposed on a substrate, and a transistor structure is disposed on the dielectric layer. The transistor structure includes a body region, a source region, a drain region, and a gate layer. The body region is formed on a first surface portion of the dielectric layer, the source region is formed on a second surface portion of the dielectric layer contiguous with the first surface portion, the drain region is formed on a third surface portion of the dielectric layer contiguous with the first surface portion, and the gate layer overlies the body region and being operative to induce a channel in that portion of the body region disposed between and adjoining the source region and the drain region. In addition, multiple diffusions are placed across two edges of the source region.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: June 4, 2002
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Robert Dockerty, Nadim Haddad, Michael J. Hurt, Frederick T. Brady