Patents by Inventor Nadim Khlat

Nadim Khlat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200350865
    Abstract: An envelope tracking (ET) integrated circuit (IC) (ETIC) is provided. The ETIC is configured to generate an ET voltage based on a supply voltage(s) and provide the ET voltage to an amplifier circuit(s) for amplifying a radio frequency (RF) signal(s). Notably, the RF signal(s) may be modulated in different modulation bandwidths and the amplifier circuit(s) may correspond to different load-line impedances. Accordingly, the ETIC may need to adapt the ET voltage such that the ETIC and the amplifier circuit(s) can operate at higher efficiencies. In examples discussed herein, the ETIC is configured to determine a time-variant peak of the ET voltage and adjust the supply voltage(s) accordingly. As a result, it may be possible to improve operating efficiency of the ETIC in face of a wide range of bandwidth and/or load-line requirements.
    Type: Application
    Filed: October 23, 2019
    Publication date: November 5, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200343859
    Abstract: An envelope tracking (ET) apparatus is provided. The ET apparatus includes an amplifier array(s) configured to amplify a radio frequency (RF) signal(s) based on an ET voltage(s). The ET apparatus also includes a distributed voltage amplifier (DVA) circuit(s), which may be co-located with the amplifier array(s) to help reduce trace inductance between the DVA circuit(s) and the amplifier array(s), configured to generate the ET voltage(s) based on an ET target voltage(s). The ET apparatus further includes a signal processing circuit configured to receive an analog signal(s) corresponding to the RF signal(s) and generates the ET target voltage(s) based on the analog signal. By employing a single signal processing circuit to generate the ET target voltage(s) for the amplifier array(s), it may be possible to reduce a footprint of the ET apparatus without compromising efficiency and/or increasing heat dissipation of the amplifier array(s).
    Type: Application
    Filed: October 23, 2019
    Publication date: October 29, 2020
    Inventor: Nadim Khlat
  • Patent number: 10819287
    Abstract: A multi-voltage generation circuit and related envelope tracking (ET) amplifier apparatus is provided. In one aspect, a multi-voltage generation circuit is configured to generate a number of ET target voltages based on an analog voltage signal. In another aspect, a multi-amplifier ET circuit can be configured to include a number of amplifier circuits for amplifying concurrently a radio frequency (RF) signal based on a number of ET voltages. The multi-amplifier ET circuit also includes a number of driver circuits configured to generate the ET voltages base on a number of ET target voltages. In this regard, the multi-voltage generation circuit can be provided in the multi-amplifier ET circuit to generate the ET target voltages based on the analog voltage signal that corresponds to the RF signal. In examples discussed herein, the driver circuits are co-located with the amplifier circuits to help improve efficiency and maintain linearity in the amplifier circuits.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: October 27, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Nadim Khlat
  • Patent number: 10819285
    Abstract: An envelope tracking (ET) power amplifier circuit and related apparatus are provided. The ET power amplifier circuit includes at least two power amplifiers configured to amplify at least two radio frequency (RF) signals having different amplitudes. The ET power amplifiers may be configured to amplify a summed RF signal corresponding to a summation of the RF signals and a differential RF signal corresponding to a differential of the RF signals. Given that the summed RF signal and the differential RF signal can have identical amplitude, it is possible for the ET power amplifiers to concurrently amplify the summed RF signal and the differential RF signal based on a common ET voltage. As such, an ET amplifier apparatus employing the ET power amplifier circuit can be configured to generate a lesser number of ET voltages, thus helping to reduce complexity, cost, and footprint of the ET amplifier apparatus.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: October 27, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Nadim Khlat
  • Publication number: 20200336105
    Abstract: A multi-bandwidth envelope tracking (ET) integrated circuit (IC) (ETIC) and related apparatus are provided. In a non-limiting example, the multi-bandwidth ETIC is coupled to an amplifier circuit(s) configured to amplify a radio frequency (RF) signal corresponding to a wide range of modulation bandwidth (e.g., from less than 90 KHz to over 40 MHz). In this regard, the multi-bandwidth ETIC is configured to generate different ET voltages based on the modulation bandwidth of the RF signal. By generating the ET voltages based on the modulation bandwidth of the RF signal, it may be possible to optimize operating efficiency of the amplifier circuit(s). As a result, it may be possible to improve power consumption and reduce heat dissipation in an apparatus employing the multi-bandwidth ETIC, thus making it possible to provide the multi-bandwidth ETIC in a wearable device.
    Type: Application
    Filed: October 2, 2019
    Publication date: October 22, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200336111
    Abstract: A multi-bandwidth envelope tracking (ET) integrated circuit (IC) (ETIC) is provided. The multi-bandwidth ETIC may be coupled to an amplifier circuit(s) for amplifying a radio frequency (RF) signal modulated in a wide range of modulation bandwidth. In examples discussed herein, the multi-bandwidth ETIC includes an ET voltage circuit configured to generate a modulated voltage based on a supply voltage. The supply voltage may be dynamically adjusted to cause the modulated voltage to transition quickly from one voltage level to another voltage level, particularly when the RF signal is modulated in a higher modulation bandwidth, without compromising efficiency of the ET voltage circuit. As such, the multi-bandwidth ETIC may generate different modulated voltages based on the modulation bandwidth of the RF signal, thus making it possible to employ the multi-bandwidth ETIC in a wide range of wireless communication devices, such as a fifth-generation (5G) wireless communication device.
    Type: Application
    Filed: October 10, 2019
    Publication date: October 22, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200328720
    Abstract: An envelope tracking (ET) power amplifier apparatus is provided. In a non-limiting example, the ET power amplifier apparatus includes a single ET integrated circuit (ETIC) configured to support at least a pair of amplifier circuits for amplifying different radio frequency (RF) signals. One of the amplifier circuits may be configured to amplify a respective RF signal to a higher power and thus will operate based on an ET voltage whenever possible. Another amplifier circuit, on the other hand, may be configured to amplify a respective RF signal to a relatively lower power and thus will only operate based on the ET voltage when the other amplifier circuit is inactive. By employing a single ETIC, it may be possible to reduce footprint of the ET power amplifier apparatus, thus making it possible to fit the ET power amplifier apparatus into a small form factor electronic device, such as a wearable device.
    Type: Application
    Filed: October 1, 2019
    Publication date: October 15, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200317507
    Abstract: A wire-based microelectromechanical systems (MEMS) apparatus is provided. In examples discussed herein, the wire-based MEMS apparatus includes a MEMS control bus and at least one passive MEMS switch circuit. The passive MEMS switch circuit is configured to close a MEMS switch(es) by generating a constant voltage(s) that exceeds a defined threshold voltage (e.g., 30-50 V). In a non-limiting example, the passive MEMS switch circuit can generate the constant voltage(s) based on a radio frequency (RF) voltage(s), which may be harvested from an RF signal(s) received via the MEMS control bus. In this regard, it may be possible to eliminate active components and/or circuits from the passive MEMS switch circuit, thus helping to reduce leakage and power consumption. As a result, it may be possible to provide the passive MEMS switch circuit in a low power apparatus for supporting such applications as the Internet-of-Things (IoT).
    Type: Application
    Filed: December 19, 2019
    Publication date: October 8, 2020
    Inventors: Nadim Khlat, Robert Aigner
  • Publication number: 20200321848
    Abstract: The present disclosure relates to a dual-modulation power management circuit (PMC), which includes a first tracking amplifier coupled to a first voltage port and configured to contribute to a first modulated voltage at the first voltage port, a second tracking amplifier coupled to a second voltage port and configured to contribute to a second modulated voltage at the second voltage port, a charge pump, a power inductor, and a low-dropout (LDO) switch unit. Herein, the power inductor is configured to induce an output current, which is based on a boosted voltage generated by the charge pump, toward the first voltage port. A first portion of the output current is eligible to flow through the LDO switch unit from the first voltage port to the second voltage port. The first modulated voltage is not smaller than the second modulated voltage over time.
    Type: Application
    Filed: September 25, 2019
    Publication date: October 8, 2020
    Inventor: Nadim Khlat
  • Patent number: 10797649
    Abstract: A multi-mode envelope tracking (ET) amplifier circuit is provided. The multi-mode ET amplifier circuit can operate in a low-resource block (RB) mode, a mid-RB mode, and a high-RB mode. The multi-mode ET amplifier circuit includes fast switcher circuitry having a first switcher path and a second switcher path and configured to generate an alternating current (AC) current. A control circuit activates the fast switcher circuitry in the mid-RB mode and the high-RB mode, while deactivating the fast switcher circuitry in the low-RB mode. More specifically, the control circuit selectively activates one of the first switcher path and the second switcher path in the mid-RB mode and activates both the first switcher path and the second switcher path in the high-RB mode. As a result, it is possible to improve efficiency of ET tracker circuitry and the multi-mode ET amplifier circuit in all operation modes.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: October 6, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Nadim Khlat
  • Patent number: 10797650
    Abstract: An envelope tracking (ET) amplifier apparatus is provided. The ET amplifier apparatus includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on a modulated voltage. In examples discussed herein, the amplifier circuit is co-located with a local voltage amplifier circuit configured to supply the modulated voltage such that a trace inductance between the amplifier circuit and the local voltage amplifier circuit can be reduced to below a defined threshold. By co-locating the amplifier circuit with the local voltage amplifier circuit to reduce a coupling distance between the amplifier circuit and the local voltage amplifier circuit and thus the trace inductance associated with the coupling distance, it may be possible to reduce degradation in the modulated voltage. As a result, it may be possible to improve efficiency and maintain linearity in the amplifier circuit, particularly when the RF signal is modulated at a higher modulation bandwidth.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 6, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Nadim Khlat
  • Patent number: 10790817
    Abstract: A power switch with a bootstrap driver for continuous time operation is disclosed. In an exemplary aspect, the power switch selectively connects power management circuitry to one or more power amplifier stages in a radio frequency (RF) front end. The bootstrap driver provides a constant gate to source voltage during an enabled state of the power switch such that a switching element can remain closed with near-constant closed switch resistance in the presence of varying signals (e.g., varying power signals) passing through the power switch. The bootstrap driver can use a variable clock frequency to quickly close the power switch and resistor-capacitor (RC) filtering to reduce noise contribution to the signal path through the power switch. In some examples, a constant voltage reference provides battery independent voltage control of the gate to source voltage of the power switch.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: September 29, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Michael J. Murphy, Michael R. Kay, Nadim Khlat
  • Publication number: 20200304021
    Abstract: The present disclosure relates to a direct current (DC)-DC converter associated with a radio frequency transceiver, which includes a transceiver capacitor. The disclosed DC-DC converter includes a battery terminal configured to provide a battery voltage, a charge pump coupled to the battery terminal and configured to provide a boosted voltage based on the battery voltage, a power inductor is coupled between the charge pump and the transceiver capacitor, and fast voltage charging circuitry with a fast-path block that is coupled between the charge pump and the transceiver capacitor. Herein, the transceiver capacitor is capable to be charged with the boosted voltage through the power inductor. The fast-path block is parallel with the power inductor and configured to provide an extra charging path to the transceiver capacitor, so as to accelerate a charging speed of the transceiver capacitor.
    Type: Application
    Filed: February 11, 2020
    Publication date: September 24, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200295710
    Abstract: An envelope tracking (ET) amplifier apparatus is provided. In examples discussed herein, the ET amplifier apparatus can be configured to operate in a fifth-generation (5G) standalone (SA) mode and a 5G non-standalone (NSA) mode. In the SA mode, the ET amplifier apparatus can enable a first pair of amplifier circuits to amplifier a 5G signal for concurrent transmission in a 5G band(s). In the NSA mode, the ET amplifier apparatus can enable a second pair of amplifier circuits to amplify a non-5G anchor signal and a 5G signal for concurrent transmission in a non-5G anchor band(s) and a 5G band(s), respectively. As such, the ET circuit may be provided in a communication apparatus (e.g., a 5G-enabled smartphone) to help improve power amplifier linearity and efficiency in both 5G SA and NSA modes.
    Type: Application
    Filed: July 17, 2019
    Publication date: September 17, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200295708
    Abstract: An envelope tracking (ET) circuit is provided. In examples discussed herein, the ET circuit can be configured to operate in a fifth-generation (5G) standalone (SA) mode and a 5G non-standalone (NSA) mode. In the SA mode, the ET circuit can enable a first pair of ET power amplifier circuits to amplify a 5G signal based on ET for concurrent transmission in a 5G band(s). In the NSA mode, the ET circuit can enable a second pair of ET power amplifier circuits to amplify an anchor signal and a 5G signal based on ET for concurrent transmission in an anchor band(s) and a 5G band(s), respectively. As such, the ET circuit may be provided in a 5G-enabled wireless communication device (e.g., a 5G-enabled smartphone) to help improve power amplifier linearity and efficiency in both 5G SA and NSA networks.
    Type: Application
    Filed: July 11, 2019
    Publication date: September 17, 2020
    Inventor: Nadim Khlat
  • Publication number: 20200294743
    Abstract: A microelectromechanical systems (MEMS) switch die having an N number of radio frequency (RF) MEMS switches, each having a anchored beam with a switch contact, a gate, and a terminal contact is disclosed. Also included is a MEMS-based decoder having logic gates comprised of logic MEMS switches that are configured to decode the coded signals to determine which of the N number of RF MEMS switches to open and close, apply a higher level gate voltage to each gate of the RF MEMS switches determined to be closed, wherein the higher gate voltage electrostatically pulls the anchored beam and brings the switch contact into electrical contact with the terminal contact, and apply a lower gate voltage to each gate of the RF MEMS switches to be opened, wherein the lower gate voltage releases the anchored beam and allows the switch contact to break electrical contact with the terminal contact.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Inventors: Nadim Khlat, Marcus Granger-Jones
  • Publication number: 20200295713
    Abstract: A multi-mode envelope tracking (ET) target voltage circuit is provided. In an ET amplifier apparatus, an amplifier circuit is configured to amplify a radio frequency (RF) signal based on a time-variant ET voltage, which is generated based on a time-variant ET target voltage configured to track a time-variant power envelope of the RF signal. Notably, when the ET amplifier apparatus operates in a fifth-generation (5G) standalone (SA) or non-standalone (NSA) mode, the amplifier circuit may experience interference creating a reverse intermodulation product (rIMD) that can degrade efficiency and performance of the amplifier circuit. In examples discussed herein, the multi-mode ET target voltage circuit is configured to generate the ET target voltage based on a reduced slew rate to help suppress the rIMD at the amplifier circuit, thus making it possible to improve efficiency and performance of the ET amplifier apparatus in the SA and the NSA modes.
    Type: Application
    Filed: July 11, 2019
    Publication date: September 17, 2020
    Inventor: Nadim Khlat
  • Patent number: 10778151
    Abstract: Embodiments of the disclosure relate to a multi-mode power management system supporting fifth-generation new radio (5G-NR). The multi-mode power management system includes first tracker circuitry and second tracker circuitry each capable of supplying an envelope tracking (ET) modulated or an average power tracking (APT) modulated voltage. In examples discussed herein, the first tracker circuitry and the second tracker circuitry have been configured to support third-generation (3G) and fourth-generation (4G) power amplifier circuits in various 3G/4G operation modes. The multi-mode power management system is adapted to further support a 5G-NR power amplifier circuit(s) in various 5G-NR operation modes based on the existing first tracker circuitry and/or the existing second tracker circuitry.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 15, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Nadim Khlat
  • Patent number: 10770253
    Abstract: Microelectromechanical system (MEMS) switches that provide low contact resistance over a large number of open and close contact cycles are disclosed. A MEMS switch device may include a plurality of parallel MEMS switches with a first MEMS switch that is configured differently in such a manner to close first and/or open last during open and close cycles. In this regard, the first MEMS switch may experience increased contact resistance over a large number of open and close cycles while other MEMS switches maintain a low contact resistance. In certain embodiments, the first MEMS switch is controlled by a different control signal to open and close differently than the other MEMS switches. In certain embodiments, a common control signal controls a plurality of MEMS switches and the first MEMS switch is mechanically different such that it opens and closes differently than other MEMS switches.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 8, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jonathan Hale Hammond
  • Publication number: 20200274494
    Abstract: An envelope tracking (ET) integrated circuit (IC) (ETIC) is provided. The ETIC includes a number of ET circuits configured to generate a number of ET voltages based on a number of ET target voltages, respectively. In examples discussed herein, a selected ET circuit among the ET circuits is configured to generate a respective ET voltage based on a maximum ET target voltage among the ET target voltages. In this regard, the respective ET voltage generated by the selected ET circuit can be used as a reference ET voltage for the rest of the ET circuits in the ETIC. As a result, it may be possible to opportunistically turn off or reduce functionality of one or more other ET circuits in the ETIC, thus helping to reduce peak battery current and improve heat dissipation in an ET amplifier apparatus incorporating the ETIC.
    Type: Application
    Filed: August 23, 2019
    Publication date: August 27, 2020
    Inventor: Nadim Khlat