Patents by Inventor Naftali Eliahu Lustig

Naftali Eliahu Lustig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133268
    Abstract: Embodiments of the present invention are directed to a new crack stop system and a method for providing an interlayer dielectric (ILD) crack bifurcation in semiconductor back-end-of-line (BEOL). In a non-limiting embodiment of the invention, a crack stop is formed over a substrate. The crack stop can span one or more dielectric layers. A topologically interlocking composite structure is formed adjacent to the crack stop and over the substrate. The topologically interlocking composite structure spans the one or more dielectric layers. A capping film is formed over the topologically interlocking composite structure and one or more metal interconnect layers are formed over the capping film. The composite structure includes a bulk matrix material and embedded inclusions. To promote crack bifurcation, materials of the inclusions and bulk matrix material are selected to ensure that the Young's modulus of the inclusions is greater than the Young's modulus of the bulk matrix material.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 28, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tuhin Sinha, Naftali Eliahu Lustig
  • Publication number: 20200373250
    Abstract: Embodiments of the present invention are directed to a new crack stop system and a method for providing an interlayer dielectric (ILD) crack bifurcation in semiconductor back-end-of-line (BEOL). In a non-limiting embodiment of the invention, a crack stop is formed over a substrate. The crack stop can span one or more dielectric layers. A topologically interlocking composite structure is formed adjacent to the crack stop and over the substrate. The topologically interlocking composite structure spans the one or more dielectric layers. A capping film is formed over the topologically interlocking composite structure and one or more metal interconnect layers are formed over the capping film. The composite structure includes a bulk matrix material and embedded inclusions. To promote crack bifurcation, materials of the inclusions and bulk matrix material are selected to ensure that the Young's modulus of the inclusions is greater than the Young's modulus of the bulk matrix material.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Inventors: TUHIN SINHA, Naftali Eliahu Lustig
  • Patent number: 9099468
    Abstract: An electronic fuse and method for forming the same. Embodiments of the invention include e-fuses having a first metallization level including a metal structure, a second metallization level above the first metallization level, a metal via in the second metallization level, an interface region where the metal via meets the first metallization level, and a damaged region at the interface region. Embodiments further include a method including providing a first metallization level including a metal structure, forming a capping layer on the first metallization level, forming an opening in the capping layer that exposes a portion of the metal structure; forming above the capping layer an adhesion layer contacting the metal structure, forming an insulating layer above the adhesion layer, etching the insulating layer and the adhesion layer to form a recess exposing the metal structure, and filling the fuse via recess to form a fuse via.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: August 4, 2015
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Daniel C. Edelstein, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Publication number: 20150041951
    Abstract: An electronic fuse and method for forming the same. Embodiments of the invention include e-fuses having a first metallization level including a metal structure, a second metallization level above the first metallization level, a metal via in the second metallization level, an interface region where the metal via meets the first metallization level, and a damaged region at the interface region. Embodiments further include a method including providing a first metallization level including a metal structure, forming a capping layer on the first metallization level, forming an opening in the capping layer that exposes a portion of the metal structure; forming above the capping layer an adhesion layer contacting the metal structure, forming an insulating layer above the adhesion layer, etching the insulating layer and the adhesion layer to form a recess exposing the metal structure, and filling the fuse via recess to form a fuse via.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 12, 2015
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Daniel C. Edelstein, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Patent number: 8916461
    Abstract: An electronic fuse and method for forming the same. Embodiments of the invention include e-fuses having a first metallization level including a metal structure, a second metallization level above the first metallization level, a metal via in the second metallization level, an interface region where the metal via meets the first metallization level, and a damaged region at the interface region. Embodiments further include a method including providing a first metallization level including a metal structure, forming a capping layer on the first metallization level, forming an opening in the capping layer that exposes a portion of the metal structure; forming above the capping layer an adhesion layer contacting the metal structure, forming an insulating layer above the adhesion layer, etching the insulating layer and the adhesion layer to form a recess exposing the metal structure, and filling the fuse via recess to form a fuse via.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Daniel C. Edelstein, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Patent number: 8836124
    Abstract: A fuse structure includes within an aperture within a dielectric layer located over a substrate that exposes a conductor contact layer within the substrate a seed layer interposed between the conductor contact layer and another conductor layer. The seed layer includes a doped copper material that includes a dopant immobilized predominantly within the seed layer. The fuse structure may be severed while not severing a conductor interconnect structure also located over the substrate that exposes a second conductor contact layer within a second aperture. In contrast with the fuse structure that includes the doped seed layer having the immobilized dopant, the interconnect structure includes a doped seed layer having a mobile dopant.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Samuel Sung Shik Choi, Ronald G. Filippi, Stephan Grunow, Naftali Eliahu Lustig, Andrew H. Simon
  • Patent number: 8736020
    Abstract: An electronic anti-fuse structure, the structure including an Mx level comprising a first Mx metal and a second Mx metal, a dielectric layer located above the Mx level, an Mx+1 level located above the dielectric layer; and a metallic element in the dielectric layer and positioned between the first Mx metal and the second Mx metal, wherein the metallic element is insulated from both the first Mx metal and the second Mx metal.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Publication number: 20140077334
    Abstract: An electronic fuse and method for forming the same. Embodiments of the invention include e-fuses having a first metallization level including a metal structure, a second metallization level above the first metallization level, a metal via in the second metallization level, an interface region where the metal via meets the first metallization level, and a damaged region at the interface region. Embodiments further include a method including providing a first metallization level including a metal structure, forming a capping layer on the first metallization level, forming an opening in the capping layer that exposes a portion of the metal structure; forming above the capping layer an adhesion layer contacting the metal structure, forming an insulating layer above the adhesion layer, etching the insulating layer and the adhesion layer to form a recess exposing the metal structure, and filling the fuse via recess to form a fuse via.
    Type: Application
    Filed: September 20, 2012
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jinjing Bao, Griselda Bonilla, Samuel S. Choi, Daniel C. Edelstein, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Publication number: 20140070363
    Abstract: An electronic anti-fuse structure, the structure including an Mx level comprising a first Mx metal and a second Mx metal, a dielectric layer located above the Mx level, an Mx+1 level located above the dielectric layer; and a metallic element in the dielectric layer and positioned between the first Mx metal and the second Mx metal, wherein the metallic element is insulated from both the first Mx metal and the second Mx metal.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Publication number: 20130234284
    Abstract: A fuse structure includes within an aperture within a dielectric layer located over a substrate that exposes a conductor contact layer within the substrate a seed layer interposed between the conductor contact layer and another conductor layer. The seed layer includes a doped copper material that includes a dopant immobilized predominantly within the seed layer. The fuse structure may be severed while not severing a conductor interconnect structure also located over the substrate that exposes a second conductor contact layer within a second aperture. In contrast with the fuse structure that includes the doped seed layer having the immobilized dopant, the interconnect structure includes a doped seed layer having a mobile dopant.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Samuel Sung Shik Choi, Ronald G. Filippi, Stephan Grunow, Naftali Eliahu Lustig, Andrew H. Simon
  • Patent number: 8030707
    Abstract: A method of forming a silicon-on-insulator (SOI) semiconductor structure in a substrate having a bulk semiconductor layer, a buried oxide (BOX) layer and an SOI layer. During the formation of a trench in the structure, the BOX layer is undercut. The method includes forming a dielectric material on the upper wall of the trench adjacent to the undercutting of the BOX layer and then etching the dielectric material to form a spacer. The spacer fixes the BOX layer undercut and protects it during subsequent steps of forming a bottle-shaped portion of the trench, forming a buried plate in the deep trench; and then forming a trench capacitor. There is also a semiconductor structure, preferably an SOI eDRAM structure, having a spacer which fixes the undercutting in the BOX layer.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Naftali Eliahu Lustig, Daewon Yang
  • Publication number: 20100213522
    Abstract: A method of forming a silicon-on-insulator (SOI) semiconductor structure in a substrate having a bulk semiconductor layer, a buried oxide (BOX) layer and an SOI layer. During the formation of a trench in the structure, the BOX layer is undercut. The method includes forming a dielectric material on the upper wall of the trench adjacent to the undercutting of the BOX layer and then etching the dielectric material to form a spacer. The spacer fixes the BOX layer undercut and protects it during subsequent steps of forming a bottle-shaped portion of the trench, forming a buried plate in the deep trench; and then forming a trench capacitor. There is also a semiconductor structure, preferably an SOI eDRAM structure, having a spacer which fixes the undercutting in the BOX layer.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Naftali Eliahu Lustig, Daewon Yang
  • Publication number: 20090093114
    Abstract: A method of forming a dual-damascene wire. The method includes forming a via opening in a dielectric layer, filling the via opening with a polymeric formation including at least about 6% by weight of solids of thermal acid generator; heating the polymeric underlayer to a temperature greater than room temperature but less than about 180° C.; lithographically forming a trench in the dielectric layer and filling the via opening and the trench with an electrical conductor, a top surface of the electrical conductor substantially co-planer with the top surface of the second dielectric capping layer.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventors: Sean David Burns, Matthew Earl Colburn, Naftali Eliahu Lustig, David R. Medeiros, Kaushal Patel, Libor Vyklicky
  • Patent number: 7488679
    Abstract: A method of forming an interconnect structure in an inter-layer dielectric (ILD) material, the method include the steps of creating one or more via openings in the ILD material; forming a first liner covering at least one of the one or more via openings; creating one or more trench openings on top of at least one of the one or more via openings covered by the first liner; and forming a second liner covering the trenching openings and at least part of the first liner. An interconnect structure formed by the method is also provided.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Theodorus Eduardus Standaert, Pegeen M. Davis, John Anthony Fitzsimmons, Stephen Edward Greco, Tze-Man Ko, Naftali Eliahu Lustig, Lee Matthew Nicholson, Sujatha Sankaran
  • Publication number: 20080026568
    Abstract: A method of forming an interconnect structure in an inter-layer dielectric (ILD) material, the method include the steps of creating one or more via openings in the ILD material; forming a first liner covering at least one of the one or more via openings; creating one or more trench openings on top of at least one of the one or more via openings covered by the first liner; and forming a second liner covering the trenching openings and at least part of the first liner. An interconnect structure formed by the method is also provided.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Theodorus Eduardus Standaert, Pegeen M. Davis, John Anthony Fitzsimmons, Stephen Edward Greco, Tze-Man Ko, Naftali Eliahu Lustig, Lee Matthew Nicholson, Sujatha Sankaran
  • Patent number: 6573606
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A—X—Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 3, 2003
    Assignee: International Business Machines Corporation
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birenda Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Publication number: 20030001275
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A-X-Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 2, 2003
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birendra Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Patent number: 6020264
    Abstract: In-line thickness measurement of a dielectric film layer on a surface of a workpiece subsequent to a polishing on a chemical-mechanical polishing machine in a polishing slurry is disclosed. The workpiece includes a given level of back-end-of-line (BEOL) structure including junctions. The measurement apparatus includes a platen and an electrode embedded within the platen. A positioning mechanism positions the workpiece above the electrode with the dielectric layer facing in a direction of the electrode. A slurry dam is used for maintaining a prescribed level of a conductive polishing slurry above the electrode, the prescribed level to ensure a desired slurry coverage of the workpiece. A capacitance sensor senses a system capacitance C in accordance with an RC equivalent circuit model, wherein the RC equivalent circuit includes a resistance R representative of the slurry and workpiece resistances and the system capacitance C representative of the dielectric material and junction capacitances.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: February 1, 2000
    Assignee: International Business Machines Corporation
    Inventors: Naftali Eliahu Lustig, William L. Guthrie, Thomas E. Sandwick