Patents by Inventor Naidu Prasad

Naidu Prasad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8669817
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 11, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Patent number: 8471538
    Abstract: A low drop-out (LDO) voltage regulation circuit includes first and second internal current paths. The first internal current path is between the input supply voltage and ground and includes the regulator's buffer circuit. The second internal current path is between the input supply voltage and ground and includes the regulator's power transistor. The amount of current flowing through the first internal current path relative to the amount of current flowing through the second internal current path is an increasing function of a current supplied to a load connected to the output supply node. The load regulation of the LDO is improved as the DC gain will not go down at lower load currents. Further, the no load to full load response time is improved as the load pole and power MOS gate pole are actively controlled with respect to output load current.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: June 25, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad
  • Publication number: 20120062326
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Patent number: 8085099
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 27, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Publication number: 20110241784
    Abstract: A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad, Srikanth Bojja, Srinivasa Rao Sabbineni, Jayaprakash Naradasi
  • Publication number: 20110181257
    Abstract: A low drop-out (LDO) voltage regulation circuit includes first and second internal current paths. The first internal current path is between the input supply voltage and ground and includes the regulator's buffer circuit. The second internal current path is between the input supply voltage and ground and includes the regulator's power transistor. The amount of current flowing through the first internal current path relative to the amount of current flowing through the second internal current path is an increasing function of a current supplied to a load connected to the output supply node. The load regulation of the LDO is improved as the DC gain will not go down at lower load currents. Further, the no load to full load response time is improved as the load pole and power MOS gate pole are actively controlled with respect to output load current.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: Deepak Pancholi, Bhavin Odedara, Naidu Prasad
  • Publication number: 20110133710
    Abstract: Techniques are presented for reducing the DC voltage shift in a voltage regulator, particularly for high and ultra-high speed load switching operation. The regulator includes a power transistor, connected between an input supply voltage and an output node, and an error amplifier, having its output connected to control the gate of the output transistor, a first input connected to receive a reference voltage, and a second input connected to a feedback node. The regulator also includes a first resistance, connected between the feedback node and ground, and also a second resistance, a third resistance, and a first capacitance, where the feedback node is connected to the output node through a combination of the first capacitance in parallel with the second resistance and in series with the third resistance.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Deepak Pancholi, Ekram Bhuiyan, Steve Chi, Naidu Prasad, Bhavin Odedara