Patents by Inventor Naixiong Jiang

Naixiong Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9295844
    Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 29, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
  • Publication number: 20140200644
    Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
  • Patent number: 8709631
    Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: April 29, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
  • Patent number: 8574737
    Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 5, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
  • Publication number: 20110202105
    Abstract: A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 18, 2011
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore, Sheldon Williams, Weiqun Yang, Taraneh Ghaffari Farazi
  • Publication number: 20100114236
    Abstract: A system and method for powering an implantable cardiac therapy device (ICTD) via a hybrid battery system. The hybrid battery is comprised of a low voltage and low current bioelectric cell, a high voltage and high current rechargeable cell, and a charging means. Via the charging means, the bioelectric cell maintains the rechargeable cell at or near full power. The rechargeable cell is configured to power some or all operations of the ICTD. Some ICTD operations may be powered directly by the bioelectric cell. The rechargeable cell is further configured to be charged via a continuous charging process, reducing the complexity of the charging circuitry. In an embodiment, at least the bioelectric cell is external to the ICTD, enabling easy replacement of this power source. In an embodiment, a consumable anode of the bioelectric cell is external to the ICTD, enabling replacement of the power source by replacing only the anode.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Applicant: PACESETTER INC.
    Inventors: Naixiong Jiang, Gene A. Bornzin, John W. Poore
  • Publication number: 20100114235
    Abstract: A system and method for powering an implantable cardiac therapy device (ICTD) uses a hybrid battery system. In an embodiment, the hybrid battery system includes of a first type of power cell and a second type of power cell. The first power cell is configured to power low voltage, low current background operations of the ICTD. The second power cell is configured to power high voltage, high current cardiac shocking. The second power cell is further configured to be charged by the first power cell via a continuous, non-regulated charging process, thereby reducing the complexity of the charging circuitry. The system is further configured so that when cardiac shocking is in progress, only the secondary power cell powers the shocking capacitor(s) of the ICTD, and the first power cell is electrically isolated from the shocking capacitor(s). This configuration contributes to longer battery life of the hybrid battery system.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Applicant: PACESETTER INC.
    Inventors: Naixiong Jiang, Gene A. Bornzin, Joseph Beauvais
  • Patent number: 7169284
    Abstract: The present invention is directed to a conductive polyethylenedioxythiophene (PEDOT) polymer coated electrode adapted for use as a cathode electrode of an electrolytic capacitor and a method of manufacturing the same. According to the present invention, a metal foil substrate is placed in an aqueous solution of a doped 3,4-ethylenedioxythiophene (EDOT) monomer and a co-solvent, to dissolve the EDOT monomer, and a current is applied until the desired thickness of the polymer coating is electrochemically deposited. Additionally, an organic acid is added to the aqueous solution to act as an oxidizer. In order to improve the uniformity and adherence of the coating a surfactant may also be added. In a preferred embodiment, the EDOT monomer and cosolvent are first mixed, and then added to a water solution of oxidizer and dopant. The polymer film is deposited electrochemically onto the substrate by applying a DC current between 0.05 mA/cm2 and 5.0 mA/cm2 for 1 to 60 minutes, more preferably between about 0.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: January 30, 2007
    Assignee: Pacesetter, Inc.
    Inventors: Naixiong Jiang, Timothy Marshall, Melissa Moore, Christopher R. Feger, Thomas F. Strange
  • Patent number: 6399216
    Abstract: A method for coating stainless steel in which a metallic material layer of Cr and alloys of Cr and at least one of Mo, W, Ni, Si, Ti, Zr is deposited onto a metal substrate. The metallic material layer is then annealed so as to form a diffusion layer between the metallic protective coating and the metal substrate. Thereafter, the metallic material layer may be passivated, forming a stable composition of at least one of carbides, borides, nitrides, silicides, oxides, and mixtures thereof on the metallic protective coating. The protective coatings of this invention significantly reduce the corrosion rate of stainless steel used in bromide-based absorption systems.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: June 4, 2002
    Assignee: Gas Research Institute
    Inventors: Palitha Jayaweera, Angel Sanjurjo, Kai-Hung Lau, Naixiong Jiang, David M. Lowe
  • Patent number: 6296687
    Abstract: An ionic conductor has been developed which exhibits both hydrogen ion conductivity and electronic conductivity. The conductor is a perovskite-type oxide represented by the general formula: ABO3 where A consists of at least one element selected from the group consisting of Ba, Ca, Mg and Sr and B is Ce1−xMx where M is a multivalent dopant metal, preferably Eu or Tb, and x is greater than 0 and less than 1. It is particularly useful in processes in which hydrogen is separated from a hydrogen-containing gas, e.g. in conversion of natural gas, operation of hydrogen fuel cells, etc.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: October 2, 2001
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Natural Resources
    Inventors: Eric D. Wachsman, Naixiong Jiang
  • Publication number: 20010001379
    Abstract: An ionic conductor has been developed which exhibits both hydrogen ion conductivity and electronic conductivity. The conductor is a perovskite-type oxide represented by the general formula: ABO3 where A consists of at least one element selected from the group consisting of Ba, Ca, Mg and Sr and B is Ce1-xMx where M is a multivalent dopant metal, preferably Eu or Tb, and x is greater than 0 and less than 1. It is particularly useful in processes in which hydrogen is separated from a hydrogen-containing gas, e.g. in conversion of natural gas, operation of hydrogen fuel cells, etc.
    Type: Application
    Filed: April 30, 1999
    Publication date: May 24, 2001
    Applicant: ERIC D. WACHSMAN
    Inventors: ERIC D. WACHSMAN, NAIXIONG JIANG
  • Patent number: 6235417
    Abstract: A two-phase proton and electron conductor is described which comprises (a) a proton conductive oxides represented by the formula: ABO3 where A is selected from the group consisting of Ba, Ca, Mg and Sr and B is Ce1−xMx or Zr1−xMx, where x has a value greater than zero and less than one and M is an element selected from the group consisting of Y, Yb, In, Gd, Nd, Eu, Sm and Tb, in combination with (b) an electron conductor comprising palladium. The palladium may be coated on particles of the oxide in the form of an oxide powder. This novel two-phase conductor is particularly useful as a mixed hydrogen ion and electronic conducting membrane for separating hydrogen from a hydrogen-containing gas.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: May 22, 2001
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Natural Resources
    Inventors: Eric D. Wachsman, Naixiong Jiang
  • Patent number: 6039894
    Abstract: The invention relates to a method for producing activated, substantially monodisperse, phosphorescent particles and particles formed thereby. The method suspends substantially monodisperse, phosphor-precursor particles in a fluidizing gas and then introduces a reactive gas to contact the suspended phosphor-precursor particles. Heating the suspended phosphor-precursor particles to a reaction temperature then forms unactivated phosphorescent particles. In another embodiment, the phosphor-precursor particles may be heated to a reaction temperature where they decompose to form the unactivated phosphor particles. The unactivated phosphorescent particles suspended within the fluidizing gas are activated by heating the unactivated phosphorescent particles to an activation temperature forming activated, substantially monodisperse, phosphorescent particles.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: March 21, 2000
    Assignees: SRI International, STC Technologies
    Inventors: Angel Sanjurjo, Kai-Hung Lau, David Lowe, Anastasia Canizales, Naixiong Jiang, Victor Wong, Liqiang Jiang, Luke V. Schneider, Naheed Mufti, Robert T. Rewick, Marie Johansson, Keith Kardos