Patents by Inventor Naman Bafna

Naman Bafna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12015345
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: June 18, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh, Mayank Jain
  • Publication number: 20240039402
    Abstract: In some examples, a circuit includes a state machine. The state machine is configured to operate in a first state in which the state machine gates a pulse width modulation (PWM) signal provided for control of a power converter according to a first signal provided by a voltage control loop. The state machine is configured to operate in a second state in which the state machine gates the PWM signal according to a second signal provided by a current limit comparator. The state machine is configured to transition from the first state to the second state responsive to the second signal being asserted after the first signal is asserted in a switching cycle of the power converter. The state machine is configured to transition from the current state to the first state responsive to the first signal being asserted after the second signal in a switching cycle of the power converter.
    Type: Application
    Filed: October 3, 2023
    Publication date: February 1, 2024
    Inventors: Naman Bafna, Muthusubramanian Venkateswaran, Mayank Jain, Vikram Gakhar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy, Pamidi Ramasiddaiah
  • Publication number: 20230378869
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Naman BAFNA, Preetam Charan Anand TADEPARTHY, Ammineni BALAJI, Sreelakshmi SURESH, Mayank JAIN
  • Patent number: 11811326
    Abstract: An example circuit includes a loop controller having current phase inputs, a feedback input, a control loop output and a transient event output. The feedback input is adapted to be coupled to an output terminal of a multi-phase power stage. A PWM circuit has a blanking input, a control input and a PWM output, the control input coupled to the control loop output. A phase management circuit has a transient detect input, a PWM input, a blanking output and phase outputs. The transient detect input is coupled to the transient event output. The PWM input is coupled to the PWM output and the blanking output is coupled to the blanking input. Each of the phase outputs is adapted to be coupled to a respective phase of the multi-phase power stage. The phase management circuit is configured to provide a blanking control signal representative of a variable blanking time.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: November 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Cheng Wei Chen, Preetam Charan Anand Tadeparthy, Sreelakshmi Suresh, Ammineni Balaji
  • Patent number: 11811314
    Abstract: In some examples, a circuit includes a state machine. The state machine is configured to operate in a first state in which the state machine gates a pulse width modulation (PWM) signal provided for control of a power converter according to a first signal provided by a voltage control loop. The state machine is configured to operate in a second state in which the state machine gates the PWM signal according to a second signal provided by a current limit comparator. The state machine is configured to transition from the first state to the second state responsive to the second signal being asserted after the first signal is asserted in a switching cycle of the power converter. The state machine is configured to transition from the current state to the first state responsive to the first signal being asserted after the second signal in a switching cycle of the power converter.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Muthusubramanian Venkateswaran, Mayank Jain, Vikram Gakhar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy, Pamidi Ramasiddaiah
  • Patent number: 11757351
    Abstract: Described embodiments include a voltage regulator circuit comprising a first comparator having a first comparator input coupled to a waveform input source, a second comparator input coupled to an output voltage terminal and a first comparator output. There is a second comparator having third and fourth comparator inputs and a second comparator output, the third comparator input coupled to a voltage source configured to provide a voltage representing a current limit, and the fourth comparator input coupled to the output voltage terminal. There is also a state machine having a first state machine input coupled to the first comparator output, a second state machine input coupled to the second comparator output and a state machine output, wherein a state of the state machine is determined by the first and second comparator outputs, and the state machine output provides a PWM signal responsive to the state of the state machine.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ammineni Balaji, Preetam Charan Anand Tadeparthy, Naman Bafna, Sreelakshmi Suresh, Cheng Wei Chen
  • Patent number: 11757358
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh, Mayank Jain
  • Patent number: 11711016
    Abstract: In described examples of a system having a proportional-integral control module, an error signal is produced that is indicative of a difference between a reference signal and an output signal. An integral control signal is produced by integrating the error signal using an integrator time constant value. During a steady state condition, a first integrator time constant value is used. When an undershoot in the output signal is detected, the integrator time constant value is increased to a second time constant value that is larger than the first integrator time constant value during the undershoot condition. The integrator time constant value is reduced to a third integrator time constant value that is less than the first integrator time constant value during a period following the undershoot condition.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: July 25, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh
  • Publication number: 20230130783
    Abstract: An example circuit includes a loop controller having current phase inputs, a feedback input, a control loop output and a transient event output. The feedback input is adapted to be coupled to an output terminal of a multi-phase power stage. A PWM circuit has a blanking input, a control input and a PWM output, the control input coupled to the control loop output. A phase management circuit has a transient detect input, a PWM input, a blanking output and phase outputs. The transient detect input is coupled to the transient event output. The PWM input is coupled to the PWM output and the blanking output is coupled to the blanking input. Each of the phase outputs is adapted to be coupled to a respective phase of the multi-phase power stage. The phase management circuit is configured to provide a blanking control signal representative of a variable blanking time.
    Type: Application
    Filed: February 28, 2022
    Publication date: April 27, 2023
    Inventors: Naman BAFNA, Cheng Wei Chen, Preetam Charan Anand Tadeparthy, Sreelakshmi Suresh, Ammineni Balaji Balaji
  • Publication number: 20230079601
    Abstract: In described examples of a system having a proportional-integral control module, an error signal is produced that is indicative of a difference between a reference signal and an output signal. An integral control signal is produced by integrating the error signal using an integrator time constant value. During a steady state condition, a first integrator time constant value is used. When an undershoot in the output signal is detected, the integrator time constant value is increased to a second time constant value that is larger than the first integrator time constant value during the undershoot condition. The integrator time constant value is reduced to a third integrator time constant value that is less than the first integrator time constant value during a period following the undershoot condition.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 16, 2023
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh
  • Publication number: 20230035151
    Abstract: Described embodiments include a voltage regulator circuit comprising a first comparator having a first comparator input coupled to a waveform input source, a second comparator input coupled to an output voltage terminal and a first comparator output. There is a second comparator having third and fourth comparator inputs and a second comparator output, the third comparator input coupled to a voltage source configured to provide a voltage representing a current limit, and the fourth comparator input coupled to the output voltage terminal. There is also a state machine having a first state machine input coupled to the first comparator output, a second state machine input coupled to the second comparator output and a state machine output, wherein a state of the state machine is determined by the first and second comparator outputs, and the state machine output provides a PWM signal responsive to the state of the state machine.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Ammineni Balaji, Preetam Charan Anand Tadeparthy, Naman Bafna, Sreelakshmi Suresh, Cheng Wei Chen
  • Publication number: 20220393588
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Application
    Filed: September 30, 2021
    Publication date: December 8, 2022
    Inventors: Naman BAFNA, Preetam Charan Anand TADEPARTHY, Ammineni BALAJI, Sreelakshmi SURESH, Mayank JAIN
  • Publication number: 20220209658
    Abstract: In some examples, a circuit includes a state machine. The state machine is configured to operate in a first state in which the state machine gates a pulse width modulation (PWM) signal provided for control of a power converter according to a first signal provided by a voltage control loop. The state machine is configured to operate in a second state in which the state machine gates the PWM signal according to a second signal provided by a current limit comparator. The state machine is configured to transition from the first state to the second state responsive to the second signal being asserted after the first signal is asserted in a switching cycle of the power converter. The state machine is configured to transition from the current state to the first state responsive to the first signal being asserted after the second signal in a switching cycle of the power converter.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 30, 2022
    Inventors: Naman BAFNA, Muthusubramanian VENKATESWARAN, Mayank JAIN, Vikram GAKHAR, Vikas LAKHANPAL, Preetam Charan Anand TADEPARTHY, Pamidi RAMASIDDAIAH
  • Patent number: 10897267
    Abstract: A circuit includes a first voltage divider having a set of most significant bit (MSB) outputs each representative of a value of a MSB portion of a digital code. The circuit also includes a second voltage divider having a first upper voltage input configured to couple to a first one of a first pair of outputs of the set of MSB outputs, and a first lower voltage input configured to couple to a second one of the first pair of outputs of the set of MSB outputs. The circuit also includes a third voltage divider having a second upper voltage input configured to couple to a first one of a second pair of outputs of the set of MSB outputs, and a second lower voltage input configured to couple to a second one of the second pair of outputs of the set of MSB outputs.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: January 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Muthusubramanian Venkateswaran, Rohit Narula