Patents by Inventor Namiki TOYAMA

Namiki TOYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11673126
    Abstract: There is provided a cluster-supporting porous carrier having improved heat resistance and/or catalytic activity, and a method for producing it. The cluster-supporting porous carrier of the invention has porous carrier particles (20) such as zeolite particles, and metal oxide clusters (16) supported within the pores of the porous carrier particles. The method of the invention for producing the cluster-supporting porous carrier includes providing a dispersion containing a dispersing medium (11) and porous carrier particles dispersed in the dispersing medium, forming positively charged metal oxide clusters (16) in the dispersion, and supporting the metal oxide clusters within the pores of the porous carrier particles (20) by electrostatic interaction.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: June 13, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro Takeda, Namiki Toyama, Kazuhiro Egashira, Toshiaki Tanaka, Seitoku Ito, Masahiko Ichihashi
  • Patent number: 11219884
    Abstract: A method for producing a cluster-supporting catalyst, the cluster-supporting catalyst including porous carrier particles that has acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, includes the following steps: providing a dispersion liquid containing a dispersion medium and the porous carrier particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the porous carrier particles through an electrostatic interaction.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: January 11, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro Takeda, Namiki Toyama, Kazuhiro Egashira, Toshiaki Tanaka, Seitoku Ito
  • Publication number: 20210331143
    Abstract: A cluster-supporting catalyst including porous carrier particles having acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles. In the cluster-supporting catalyst including porous carrier particles having acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, the catalyst metal may be rhodium, the catalyst metal may be palladium, the catalyst metal may be platinum, or the catalyst metal may be copper.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 28, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro TAKEDA, Namiki TOYAMA, Kazuhiro EGASHIRA, Toshiaki TANAKA, Seitoku ITO
  • Publication number: 20210331144
    Abstract: A cluster-supporting catalyst including porous carrier particles having acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles. The catalyst metal clusters are obtained by supporting catalyst metal clusters having a positive charge, which is formed in a dispersion liquid containing a dispersion medium and the porous carrier particles dispersed in the dispersion medium, on the acid sites within the pores of the porous carrier particles through an electrostatic interaction.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 28, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro TAKEDA, Namiki TOYAMA, Kazuhiro EGASHIRA, Toshiaki TANAKA, Seitoku ITO
  • Patent number: 11014073
    Abstract: An improved cluster-supporting catalyst has heteroatom-removed zeolite particles, and catalyst metal clusters supported within the pores of the heteroatom-removed zeolite particles. A method for producing a cluster-supporting catalyst includes the following steps: providing a dispersion liquid containing a dispersion medium and the heteroatom-removed zeolite particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters within the pores of the heteroatom-removed zeolite particles through an electrostatic interaction.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 25, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Kazuhiro Egashira, Yoshihiro Takeda, Namiki Toyama, Toshiaki Tanaka, Seitoku Ito, Masahiko Ichihashi
  • Publication number: 20210077986
    Abstract: There is provided a cluster-supporting porous carrier having improved heat resistance and/or catalytic activity, and a method for producing it. The cluster-supporting porous carrier of the invention has porous carrier particles (20) such as zeolite particles, and metal oxide clusters (16) supported within the pores of the porous carrier particles. The method of the invention for producing the cluster-supporting porous carrier includes providing a dispersion containing a dispersing medium (11) and porous carrier particles dispersed in the dispersing medium, forming positively charged metal oxide clusters (16) in the dispersion, and supporting the metal oxide clusters within the pores of the porous carrier particles (20) by electrostatic interaction.
    Type: Application
    Filed: June 27, 2018
    Publication date: March 18, 2021
    Inventors: Yoshihiro TAKEDA, Namiki TOYAMA, Kazuhiro EGASHIRA, Toshiaki TANAKA, Seitoku ITO, Masahiko ICHIHASHI
  • Patent number: 10576460
    Abstract: Cluster-supporting catalyst having an improved heat resistivity, and method for producing the same are provided. The cluster-supporting catalyst includes boron-substitute zeolite particles, and catalyst metal clusters supported within the pores of the boron-substitute zeolite particles. The method for producing a cluster-supporting catalyst, includes the following steps: providing a dispersion liquid containing a dispersion medium and boron-substitute zeolite particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the boron-substitute zeolite particles through an electrostatic interaction.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: March 3, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Namiki Toyama, Yoshihiro Takeda, Masahiko Ichihashi, Toshiaki Tanaka, Kazuhiro Egashira, Seitoku Ito
  • Publication number: 20190001306
    Abstract: A method for producing a cluster-supporting catalyst, the cluster-supporting catalyst including porous carrier particles that has acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, includes the following steps: providing a dispersion liquid containing a dispersion medium and the porous carrier particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the porous carrier particles through an electrostatic interaction.
    Type: Application
    Filed: December 26, 2016
    Publication date: January 3, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro TAKEDA, Namiki TOYAMA, Kazuhiro EGASHIRA, Toshiaki TANAKA, Seitoku ITO
  • Publication number: 20180369789
    Abstract: An improved cluster-supporting catalyst has heteroatom-removed zeolite particles, and catalyst metal clusters supported within the pores of the heteroatom-removed zeolite particles. A method for producing a cluster-supporting catalyst includes the following steps: providing a dispersion liquid containing a dispersion medium and the heteroatom-removed zeolite particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters within the pores of the heteroatom-removed zeolite particles through an electrostatic interaction.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Kazuhiro EGASHIRA, Yoshihiro TAKEDA, Namiki TOYAMA, Toshiaki TANAKA, Seitoku ITO, Masahiko ICHIHASHI
  • Publication number: 20180345253
    Abstract: Cluster-supporting catalyst having an improved heat resistivity, and method for producing the same are provided. The cluster-supporting catalyst includes boron-substitute zeolite particles, and catalyst metal clusters supported within the pores of the boron-substitute zeolite particles. The method for producing a cluster-supporting catalyst, includes the following steps: providing a dispersion liquid containing a dispersion medium and boron-substitute zeolite particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the boron-substitute zeolite particles through an electrostatic interaction.
    Type: Application
    Filed: May 3, 2018
    Publication date: December 6, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Namiki TOYAMA, Yoshihiro TAKEDA, Masahiko ICHIHASHI, Toshiaki TANAKA, Kazuhiro EGASHIRA, Seitoku ITO