Patents by Inventor Namsun Choi

Namsun Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030317
    Abstract: A wafer dividing method of dividing a wafer along each of a plurality of projected dicing lines set in a grid pattern on a front surface of the wafer includes forming a division initiating point serving as an initiating point of division of the wafer along each of the dicing lines, adhering a protective film made of an olefin-based resin and having one surface with no adhesive used therein to the wafer in such a manner that the one surface is brought into intimate contact with the front surface of the wafer, supporting the wafer by a support table in such a manner that the front surface of the wafer and the support table face each other, and applying an external force to the wafer from a back surface side of the wafer to thereby divide the wafer at the division initiating points.
    Type: Application
    Filed: July 18, 2022
    Publication date: February 2, 2023
    Inventor: Namsun CHOI
  • Publication number: 20210395498
    Abstract: An embodiment of the present invention provides a racing tire rubber composition comprising: 30-60 wt % of rubber, 10-30 wt % of carbon black, 1-20 wt % of carbon nanotubes, and 10-50 wt % of oil; and a method for manufacturing same.
    Type: Application
    Filed: November 11, 2019
    Publication date: December 23, 2021
    Inventors: Dong Hoon OH, Namsun CHOI, Young Woo LIM
  • Patent number: 9006132
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 14, 2015
    Assignee: Korea Kumho Petrochemical Co., Ltd
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Patent number: 8398894
    Abstract: The present invention relates to a catalyst for preparing a carbon nanotube having desired apparent density by controlling the adding amount of co-precipitating agent in the process of preparing a catalyst in order to obtain a catalyst having a minimized particle size. More specifically, this invention relates to a catalyst for preparing carbon nanotube having desired apparent density based upon the reverse-correlation between the amount of co-precipitating agent added in the process of preparing catalyst and the apparent density of catalyst. The carbon nanotube prepared by the catalyst having low apparent density shows excellent electrical conductivity and highly uniformed dispersion in the polymer/carbon nanotube composite.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 19, 2013
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Namsun Choi, Hyun-Kyung Sung, Dong Hwan Kim, Sang-Hyo Ryu, Wan Sung Lee, Youngchan Jang
  • Patent number: 8202818
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube and a process for preparing carbon nanotube using the same. More particularly, this invention relates to a process for preparing carbon nanotube by the chemical vapor deposition method through the decomposition of lower saturated or unsaturated hydrocarbons using a multi-component metal catalyst composition containing active metal catalyst from Co, V, Al and inactive porous support. Further, the present invention affords the carbon nanotube having 5˜30 nm of diameter and 100˜10,000 of aspect ratio in a high catalytic yield.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 19, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Hyun-Kyung Sung, Wan Sung Lee, Namsun Choi, Dong Hwan Kim, Youngchan Jang
  • Patent number: 8137591
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube containing multi-component support materials of amorphous Si, Mg and Al as well as a bulk scale preparation process for preparing carbon nanotube using said catalyst composition. More specifically, this invention relates to a process for preparing carbon nanotube using the catalyst composition comprising a transition metal catalyst and support materials of amorphous Si, Mg and Al.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 20, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Dong Hwan Kim, Sang-Hyo Ryu, Wan Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Publication number: 20120040186
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Application
    Filed: May 11, 2011
    Publication date: February 16, 2012
    Applicant: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Patent number: 8048821
    Abstract: The present invention relates to a catalyst composition for the synthesis of thin multi-walled carbon nanotube (MWCNT) and a method for manufacturing a catalyst composition. More particularly, this invention relates to a multi-component metal catalyst composition comprising i) main catalyst of Fe and Al, ii) inactive support of Mg and iii) optional co-catalyst at least one selected from Co, Ni, Cr, Mn, Mo, W, V, Sn, or Cu. Further, the present invention affords thin multi-walled carbon nanotube having 5˜20 nm of diameter and 100˜10,000 of aspect ratio in a high yield.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: November 1, 2011
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Dong Hwan Kim, Wan Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Publication number: 20110006266
    Abstract: The present invention relates to a catalyst for preparing a carbon nanotube having desired apparent density by controlling the adding amount of co-precipitating agent in the process of preparing a catalyst in order to obtain a catalyst having a minimized particle size. More specifically, this invention relates to a catalyst for preparing carbon nanotube having desired apparent density based upon the reverse-correlation between the amount of co-precipitating agent added in the process of preparing catalyst and the apparent density of catalyst. The carbon nanotube prepared by the catalyst having low apparent density shows excellent electrical conductivity and highly uniformed dispersion in the polymer/carbon nanotube composite.
    Type: Application
    Filed: December 18, 2009
    Publication date: January 13, 2011
    Applicant: KOREA KUMHO PETROCHEMICAL CO., LTD.
    Inventors: Namsun CHOI, Hyun-Kyung SUNG, Dong Hwan KIM, Sang-Hyo RYU, Wan Sung LEE, Youngchan JANG
  • Publication number: 20100230642
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube containing multi-component support materials of amorphous Si, Mg and Al as well as a bulk scale preparation process for preparing carbon nanotube using said catalyst composition. More specifically, this invention relates to a process for preparing carbon nanotube using the catalyst composition comprising a transition metal catalyst and support materials of amorphous Si, Mg and Al.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 16, 2010
    Inventors: Dong Hwan KIM, Sang-Hyo RYU, Wan Sung LEE, Namsun CHOI, Hyun-Kyung SUNG, Youngchan JANG
  • Publication number: 20100207053
    Abstract: The present invention relates to a catalyst composition for the synthesis of thin multi-walled carbon nanotube (MWCNT) and a method for manufacturing a catalyst composition. More particularly, this invention relates to a multi-component metal catalyst composition comprising i) main catalyst of Fe and Al, ii) inactive support of Mg and iii) optional co-catalyst at least one selected from Co, Ni, Cr, Mn, Mo, W, V, Sn, or Cu. Further, the present invention affords thin multi-walled carbon nanotube having 5˜20 nm of diameter and 100˜10,000 of aspect ratio in a high yield.
    Type: Application
    Filed: May 27, 2009
    Publication date: August 19, 2010
    Inventors: Sang-Hyo RYU, Dong Hwan Kim, Wang Sung Lee, Namsun Choi, Hyun-Kyung Sung, Youngchan Jang
  • Publication number: 20100167053
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube and a process for preparing carbon nanotube using the same. More particularly, this invention relates to a process for preparing carbon nanotube by the chemical vapor deposition method through the decomposition of lower saturated or unsaturated hydrocarbons using a multi-component metal catalyst composition containing active metal catalyst from Co, V, Al and inactive porous support. Further, the present invention affords the carbon nanotube having 5˜30 nm of diameter and 100˜10,000 of aspect ratio in a high catalytic yield.
    Type: Application
    Filed: May 26, 2009
    Publication date: July 1, 2010
    Inventors: Hyun-Kyung Sung, Wan Sung Lee, Namsun Choi, Dong Hwan Kim, Youngchan Jang
  • Publication number: 20090053608
    Abstract: The present invention provides a composite silicon anode material hybridizing carbon nanofiber for lithium secondary battery prepared by the steps comprising: i) preparing a support made by amorphous silicon alloy after processing amorphous silicon and metal; ii) dispersing the catalyst selected from Fe, Co, Ni, Cu, Mg, Mn, Ti, Sn, Si, Zr, Zn, Ge, Pb or In on the surface of said support made by amorphous silicon alloy; and iii) growing the carbon nanofiber using a carbon source selected from carbon monoxide, methane, acetylene or ethylene on said support by a chemical vapor deposition method, wherein the amount of grown carbon nanofiber is 1˜110 wt % of the amount of said support.
    Type: Application
    Filed: June 25, 2008
    Publication date: February 26, 2009
    Inventors: Im Goo Choi, Seung Yeon Jang, Namsun Choi, Hyun-Kyung Sung, Dong Hwan Kim, Youngchan Jang, Hangi Jung
  • Publication number: 20080020282
    Abstract: The present invention is to provide anode active material hybridized with carbon nano fibers for lithium secondary battery prepared by following steps comprising, i) dispersing the nano size metal catalyst to the surface of anode material selected from graphite, amorphous silicon or the complex of graphite and amorphous silicon; and ii) growing the carbon nano fiber by chemical vapor deposition method, wherein carbon nano fibers are grown in a vine form and surround the surface of anode active material.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 24, 2008
    Inventors: Dong Hwan Kim, Im Goo Choi, Seung Yeon Jang, Namsun Choi, Sang-Hyo Ryu, Youngchan Jang, Kwanyoung Lee
  • Patent number: 6756448
    Abstract: The present invention relates to a styrene copolymer and the method of preparing the same through the steps described in the following: a step of making a living polymer with an active anion by polymerizing an anionically polymerizable monomer in a non polar solvent in the presence of alkyllithum catalyst; a step of preparing a macro monomer by reacting the abovementioned living polymer with a terminal modifier represented by the structure of formula 1; and a step of copolymerizing the above macro monomer with styrene monomer with transition catalyst and co-catalyst.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: June 29, 2004
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Kwanyoung Lee, Namsun Choi
  • Publication number: 20040059075
    Abstract: The present invention relates to a styrene copolymer and the method of preparing the same through the steps described in the following:
    Type: Application
    Filed: May 15, 2003
    Publication date: March 25, 2004
    Applicant: KOREA KUMHO PETROCHEMICAL CO., LTD.
    Inventors: Kwanyoung Lee, Namsun Choi