Patents by Inventor Nan Tian

Nan Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10370523
    Abstract: Curable compositions are prepared using polyisocyanates, hydrophobic hydroxyl-terminated polymers (such as hydroxyl-terminated polyfarnesenes and hydroxyl-terminated polydienes) and organically-modified nanoclays, optionally in combination with chain extenders and/or urethane catalysts. When cured, the compositions yield polyurethane-based sealants useful in insulating glass units which have improved (lowered) moisture vapor transmission rate values as a consequence of the inclusion of the organically-modified nanoclays.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 6, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Herbert Chao, Taejun Yoo, Nan Tian
  • Patent number: 10323117
    Abstract: A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 18, 2019
    Assignee: Fina Technology, Inc.
    Inventors: Nan Tian, Herbert Chao
  • Publication number: 20190016847
    Abstract: A polymer having a hydrophobic polymer chain derived from monomers of farnesene and other optional monomers, such as dienes and vinyl aromatics. The polymer also includes one or more terminal functional groups, such as an amino group, a glycidyl group, a carboxylic acid group, a (meth)acrylate group, a silane group, an isocyanate group, an acetoacetate group, a phenolic group, and a hydroxyl group. Functional groups, such as carboxylic acids, may also be grafted along the hydrophobic polymer chain. The polymer may be incorporated in curable compositions that optionally include one or more polymer resins having similar functional groups. Methods for preparing the curable polymer compositions are also provided. The curable or cured form of the polymer composition may be used in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesive, or a propellant binder.
    Type: Application
    Filed: August 11, 2016
    Publication date: January 17, 2019
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Steven K. Henning, Nan Tian, Herbert Chao
  • Publication number: 20180355073
    Abstract: According to an aspect of the invention, a curable rubber composition is provided which includes a high molecular weight diene elastomer; optionally, a carbon black composition; a silica composition; and a farnesene polymer comprising farnesene monomers. The farnesene polymer is modified with at least one silane group, has a number average molecular weight of 1,000 g/mol to 100,000 g/mol, and has a glass transition temperature of equal to or less than ?50° C. According to another aspect of the invention, a method for producing a rubber composition for use in a tire is provided. The method includes forming a composition by mixing a farnesene polymer modified with at least one silane group, a silica composition, a high molecular weight diene elastomer, and optionally a carbon black composition, the farnesene polymer comprising farnesene monomers; and curing the composition.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 13, 2018
    Applicant: Fina Technology, Inc.
    Inventors: Steven K. HENNING, Jean-Marc MONSALLIER, Nan TIAN
  • Publication number: 20180282524
    Abstract: Curable compositions are prepared using polyisocyanates, hydrophobic hydroxyl-terminated polymers (such as hydroxyl-terminated polyfarnesenes and hydroxyl-terminated polydienes) and organically-modified nanoclays, optionally in combination with chain extenders and/or urethane catalysts. When cured, the compositions yield polyurethane-based sealants useful in insulating glass units which have improved (lowered) moisture vapor transmission rate values as a consequence of the inclusion of the organically-modified nanoclays.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 4, 2018
    Applicant: Fina Technology, Inc.
    Inventors: Herbert CHAO, Taejun YOO, Nan TIAN
  • Publication number: 20180258214
    Abstract: A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 13, 2018
    Applicant: Fina Technology, Inc.
    Inventors: Nan Tian, Herbert Chao
  • Patent number: 9994669
    Abstract: A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: June 12, 2018
    Assignee: Fina Technology, Inc.
    Inventors: Nan Tian, Herbert Chao
  • Publication number: 20170190829
    Abstract: A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Applicant: Fina Technology, Inc.
    Inventors: Nan Tian, Herbert Chao
  • Patent number: 9145334
    Abstract: An insulated glass sealant includes an elastomeric matrix that is the reaction product of a carboxyl-terminated polymer and a polycarbodiimide. A method of sealing an insulated glass unit includes applying the insulated glass sealant to one or more glass sheets, a spacer to be disposed between the glass sheets, or both; and contacting the one or more glass sheets with the spacer to define an annular space between the glass sheets and to produce the insulated glass unit. The sealants maintain the excellent attributes of traditional polyurethane sealants, such as low water swell, low moisture vapor transmission, good adhesion to the window frame, low migration of the insulating gas, and good workability, but without the use of polyisocyanates in the curing process. Methods for making the sealant and for sealing insulated glass panels, such as glass windows, with these rugged sealants, and the resulting articles, are also provided.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 29, 2015
    Assignee: Fina Technology, Inc.
    Inventors: Herbert Shin-I Chao, Nan Tian
  • Publication number: 20130224404
    Abstract: An insulated glass sealant includes an elastomeric matrix that is the reaction product of an acetoacetylated polymer and a cross-linking reagent having amino functionality, preferably a polyetheramine, polyamine, or polyamide. A method of sealing an insulated glass unit includes applying the insulated glass sealant to one or more glass sheets, disposing a spacer between the glass sheets, and contacting the glass sheets with the spacer to define an annular space between the glass sheets to produce the insulated glass unit. The sealants maintain the excellent attributes of traditional polyurethane sealants, such as low water swell, low moisture vapor transmission, good adhesion to the window frame, low migration of the insulating gas, and good workability, but without the use of polyisocyanates in the curing process. Methods for making the sealant and sealing insulated glass panels, such as glass windows, with these sealants, and the resulting articles, are also provided.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: CRAY VALLEY USA, LLC
    Inventors: Herbert Shin-I Chao, Nan Tian
  • Publication number: 20130078397
    Abstract: An insulated glass sealant includes an elastomeric matrix that is the reaction product of a carboxyl-terminated polymer and a polycarbodiimide. A method of sealing an insulated glass unit includes applying the insulated glass sealant to one or more glass sheets, a spacer to be disposed between the glass sheets, or both; and contacting the one or more glass sheets with the spacer to define an annular space between the glass sheets and to produce the insulated glass unit. The sealants maintain the excellent attributes of traditional polyurethane sealants, such as low water swell, low moisture vapor transmission, good adhesion to the window frame, low migration of the insulating gas, and good workability, but without the use of polyisocyanates in the curing process. Methods for making the sealant and for sealing insulated glass panels, such as glass windows, with these rugged sealants, and the resulting articles, are also provided.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: Cray Valley USA, LLC
    Inventors: Herbert Shin-I Chao, Nan Tian
  • Patent number: 7901695
    Abstract: A controlled continuous release composition, articles comprising the continuous release composition, methods of using the composition, and methods of preparing the composition are disclosed. The composition comprises an elastomeric matrix which is a reaction product of a carboxyl-terminated polymer with a polycarbodiimide and at least one active agent which is released from the matrix into the environment substantially continuously over an extended period of time.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: March 8, 2011
    Assignee: Cray Valley USA, LLC
    Inventors: Herbert Chao, Nan Tian
  • Patent number: 6864321
    Abstract: Compositions comprising (A) non-branched polybutadiene having terminal hydroxyl functionality less than 2 per molecule by average; and (B) branched polybutadiene having terminal hydroxyl functionality more than 2 per molecule by average; the weight ratio of (A) to (B) being about 99:1 to 1:99. These compositions are reacted with organic polyisocyanates to form prepolymers which are cured by reaction with a chain extender such as a diol to produce cured resins which exhibit unexpectedly improved tear strength properties and themoplasticity with high modulus, and improved tackiness and shelf life for hot melt adhesives. The prepolymers have lower viscosity and better storage stability as compared with those from conventional branched polybutadienes of the (B) type. Alternatively, the compositions can be cured directly in a one-shot reaction with diisocyanates to form a polyurethane with the described combination of properties.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: March 8, 2005
    Assignee: Sartomer Technology Co., Inc.
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser
  • Patent number: 6855776
    Abstract: Improved amine-terminated polybutadienes (ATPBs) having one or two terminal groups of the formula —CHRNH2 wherein R is C1-C20 alkyl, are prepared by aminating a secondary hydroxyl-terminated polybutadiene having no ether groups. The ATPBs may be hydrogenated or partially hydrogenated, either prior to or after the animation, to saturate or partially saturate the polymers. Preferred ATPBs are of the formula H2NCHR-(polybutadiene)-CHRNH2 wherein R is C1-C20 alkyl. Polyureas, polyurethanes, crosslinked epoxies, polyamides, and other derivatives with improved properties can be prepared from the ATPBs. The resultant derivatives are useful in liquid binders for braking systems, electric potting compositions, coatings, adhesives, sealants, and water proofing membranes, for example.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: February 15, 2005
    Assignee: Sartomer Technology Company, Inc.
    Inventors: Herbert Shin-I Chao, John Schmidhauser, Alain Robert Drexler, Nan Tian
  • Patent number: 6831136
    Abstract: Improved amine-terminated polybutadienes (ATPBs) having one or two terminal amino groups, are prepared by cyanoalkylating a hydroxyl-terminated polybutadiene by Michael addition of acrylonitrile in the presence of a base, forming nitrile termination, followed by hydrogenation in the presence of a Group VIII metal as catalyst. The ATPBs may be hydrogenated or partially hydrogenated, either prior to or after the amination, to saturate or partially saturate the polymers. Polyureas, polyurethanes, crosslinked epoxies, polyamides, and other derivatives with improved properties can be prepared from the ATPBs. The resultant derivatives are useful in liquid binders for braking systems, electric potting compositions, coatings, adhesives, sealants, and water proofing membranes, for example.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: December 14, 2004
    Assignee: Sartomer Technology Company, Inc.
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser
  • Publication number: 20040180044
    Abstract: A controlled continuous release composition, articles comprising the continuous release composition, methods of using the composition, and methods of preparing the composition are disclosed. The composition comprises an elastomeric matrix which is a reaction product of a carboxyl-terminated polymer with a polycarbodiimide and at least one active agent which is released from the matrix into the environment substantially continuously over an extended period of time.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 16, 2004
    Inventors: Herbert Chao, Nan Tian
  • Publication number: 20040138380
    Abstract: Improved amine-terminated polybutadienes (ATPBs) having one or two terminal amino groups, are prepared by cyanoalkylating a hydroxyl-terminated polybutadiene by Michael addition of acrylonitrile in the presence of a base, forming nitrile termination, followed by hydrogenation in the presence of a Group VIII metal as catalyst. The ATPBs may be hydrogenated or partially hydrogenated, either prior to or after the amination, to saturate or partially saturate the polymers. Polyureas, polyurethanes, crosslinked epoxies, polyamides, and other derivatives with improved properties can be prepared from the ATPBs. The resultant derivatives are useful in liquid binders for braking systems, electric potting compositions, coatings, adhesives, sealants, and water proofing membranes, for example.
    Type: Application
    Filed: January 14, 2003
    Publication date: July 15, 2004
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser
  • Publication number: 20040122176
    Abstract: Compositions comprising (A) non-branched polybutadiene having terminal hydroxyl functionality less than 2 per molecule by average; and (B) branched polybutadiene having terminal hydroxyl functionality more than 2 per molecule by average; the weight ratio of (A) to (B) being about 99:1 to 1:99. These compositions are reacted with organic polyisocyanates to form prepolymers which are cured by reaction with a chain extender such as a diol to produce cured resins which exhibit unexpectedly improved tear strength properties and themoplasticity with high modulus, and improved tackiness and shelf life for hot melt adhesives. The prepolymers have lower viscosity and better storage stability as compared with those from conventional branched polybutadienes of the (B) type. Alternatively, the compositions can be cured directly in a one-shot reaction with diisocyanates to form a polyurethane with the described combination of properties.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 24, 2004
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser
  • Patent number: 6747097
    Abstract: Compositions comprising (A) non-branched polybutadiene having terminal hydroxyl functionality less than 2 per molecule by average; and (B) branched polybutadiene having terminal hydroxyl functionality more than 2 per molecule by average; the weight ratio of (A) to (B) being about 99:1 to 1:99. These compositions are reacted with organic polyisocyanates to form prepolymers which are cured by reaction with a chain extender such as a diol to produce cured resins which exhibit unexpectedly improved tear strength properties and themoplasticity with high modulus, and improved tackiness and shelf life for hot melt adhesives. The prepolymers have lower viscosity and better storage stability as compared with those from conventional branched polybutadienes of the (B) type. Alternatively, the compositions can be cured directly in a one-shot reaction with diisocyanates to form a polyurethane with the described combination of properties.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: June 8, 2004
    Assignee: Sartomer Technologies Company, Inc.
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser
  • Publication number: 20030149179
    Abstract: Compositions comprising (A) non-branched polybutadiene having terminal hydroxyl functionality less than 2 per molecule by average; and (B) branched polybutadiene having terminal hydroxyl functionality more than 2 per molecule by average; the weight ratio of (A) to (B) being about 99:1 to 1:99. These compositions are reacted with organic polyisocyanates to form prepolymers which are cured by reaction with a chain extender such as a diol to produce cured resins which exhibit unexpectedly improved tear strength properties and themoplasticity with high modulus, and improved tackiness and shelf life for hot melt adhesives. The prepolymers have lower viscosity and better storage stability as compared with those from conventional branched polybutadienes of the (B) type. Alternatively, the compositions can be cured directly in a one-shot reaction with diisocyanates to form a polyurethane with the described combination of properties.
    Type: Application
    Filed: July 26, 2002
    Publication date: August 7, 2003
    Inventors: Herbert Chao, Nan Tian, Alain Drexler, John Schmidhauser