Patents by Inventor Nan-Ying YANG

Nan-Ying YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240371926
    Abstract: A method includes: receiving the semiconductor device, wherein the semiconductor device includes: a well region; a doped region; a plurality of gate electrodes; a plurality of source regions; and a plurality of drain regions, wherein the plurality of gate electrodes, the plurality of source region and the plurality of drain regions form a plurality of transistors; and a bulk region disposed in the doped region. A first distance measured between a first transistor of the plurality of transistors and the bulk region is greater than a second distance measured between a second transistor of the plurality of transistors and the bulk region. The method further includes: applying a first voltage to the plurality of drain regions, wherein a first avalanche current generated around the first transistor and shunted through the bulk region is greater than a second avalanche current generated around the second transistor and shunted through the bulk region.
    Type: Application
    Filed: May 5, 2023
    Publication date: November 7, 2024
    Inventors: LIANG-YU SU, FU-YU CHU, MING-TA LEI, RUEY-HSIN LIU, YU-CHANG JONG, NAN-YING YANG, PO-YU CHIANG, YU-TING WEI
  • Publication number: 20220367614
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Liang-Yu SU, Hung-Chih TSAI, Ruey-Hsin LIU, Ming-Ta LEI, Chang-Tai YANG, Te-Yin HSIA, Yu-Chang JONG, Nan-Ying YANG
  • Patent number: 11437466
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Liang-Yu Su, Hung-Chih Tsai, Ruey-Hsin Liu, Ming-Ta Lei, Chang-Tai Yang, Te-Yin Hsia, Yu-Chang Jong, Nan-Ying Yang
  • Publication number: 20220052153
    Abstract: An avalanche-protected field effect transistor includes, within a semiconductor substrate, a body semiconductor layer and a doped body contact region having a doping of a first conductivity type, and a source region a drain region having a doping of a second conductivity type. A buried first-conductivity-type well may be located within the semiconductor substrate. The buried first-conductivity-type well underlies, and has an areal overlap in a plan view with, the drain region, and is vertically spaced apart from the drain region, and has a higher atomic concentration of dopants of the first conductivity type than the body semiconductor layer. The configuration of the field effect transistor induces more than 90% of impact ionization electrical charges during avalanche breakdown to flow from the source region, to pass through the buried first-conductivity-type well, and to impinge on a bottom surface of the drain region.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Liang-Yu SU, Hung-Chih TSAI, Ruey-Hsin LIU, Ming-Ta LEI, Chang-Tai YANG, Te-Yin HSIA, Yu-Chang JONG, Nan-Ying YANG