Patents by Inventor Nancy J. Dudney

Nancy J. Dudney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11807543
    Abstract: A solid ionically conductive composition (e.g., nanoparticles of less than 1 micron or a continuous film) comprising at least one element selected from alkali metal, alkaline earth metal, aluminum, zinc, copper, and silver in combination with at least two elements selected from oxygen, sulfur, silicon, phosphorus, nitrogen, boron, gallium, indium, tin, germanium, arsenic, antimony, bismuth, transition metals, and lanthanides. Also described is a battery comprising an anode, a cathode, and a solid electrolyte (corresponding to the above ionically conductive composition) in contact with or as part of the anode and/or cathode. Further described is a thermal (e.g., plasma-based) method of producing the ionically conductive composition. Further described is a method for using an additive manufacturing (AM) process to produce an object constructed of the ionically conductive composition by use of particles of the ionically conductive composition as a feed material in the AM process.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: November 7, 2023
    Assignee: UT-Battelle, LLC
    Inventors: Andrew K. Kercher, Andrew S. Westover, Michael Naguib Abdelmalak, Nancy J. Dudney
  • Publication number: 20220263130
    Abstract: An improved gel composite electrolyte membrane and a method of its manufacture are provided. The method includes mixing polymer precursors, a lithium salt, and a ceramic filler in a vessel to form a mixture. The mixture is cast on a preheated substrate and cured to form a crosslinked composite electrolyte membrane. The composite electrolyte membrane is plasticized by immersing the composite electrolyte in a plasticizer to obtain a gel composite electrolyte membrane. The addition of a plasticizer and a ceramic filler synergistically and simultaneously act to improve the Li+ transference number and Li+ conductivity of the resulting composite electrolyte, exhibiting high ionic conductivity and mechanical stability as well improved cycling performance. The gel composite electrolyte membrane is particularly suitable for, but not limited to, lithium metal batteries.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 18, 2022
    Inventors: Xi CHEN, Yiman ZHANG, Tomonori SAITO, Nancy J. DUDNEY, Michelle LEHMANN
  • Publication number: 20220115693
    Abstract: A method for manufacturing an improved thin film composite solid electrolyte is provided. The method includes spray coating an aqueous suspension of ceramic particles onto a substrate to form a ceramic thin film. The film is sintered to form a porous ceramic structure having an interconnected necked morphology that defines cavities. The cavities are backfilled with an polymer electrolyte, for example a crosslinkable poly(ethylene oxide) (PEO)-based polymer electrolyte. The resulting thin film composite solid electrolyte is highly ionically conductive and mechanically robust with good manufacturability, particularly suitable for, but not limited to lithium metal batteries. The present method represents a departure from conventional mixing-then-casting methods and instead includes the fabrication of a solid electrolyte having a high ceramic volume fraction, high ionic conductivity, low thickness, and good chemical stability with metallic lithium.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Inventors: Xi Chen, Nancy J. Dudney, Sergiy Kalnaus, Max J. Palmer, Andrew S. Westover
  • Patent number: 11050049
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 29, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Robert L. Sacci, Nancy J. Dudney, Lance W. Gill, Edward W. Hagaman, Gabriel M. Veith
  • Patent number: 10930969
    Abstract: A lithium ion battery includes a positive electrode comprising carbon fibers, a binder composition with conductive carbon, and a lithium rich composition. The lithium rich composition comprises at least one selected from the group consisting of Li1+x(My MzII MwIII)O2 where x+y+z+w=1, and where M, MII and MIII are interchangeably manganese, nickel and cobalt, and LiM*2-xMx*IIO4, where M* and M*II are manganese and nickel, respectively, with x=0.5. A negative electrode comprises carbon fibers having bound thereto silicon nanoparticles, and a mesophase pitch derived carbon binder between the silicon nanoparticles and the carbon fibers. An electrolyte is interposed between the positive electrode and the negative electrode. Methods of making positive and negative electrodes are also disclosed.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: February 23, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Jagjit Nanda, Nancy J. Dudney, Chaitanya Kumar Narula, Sreekanth Pannala, Raymond Robert Unocic, Surendra Kumar Martha
  • Publication number: 20210032117
    Abstract: A solid ionically conductive composition (e.g., nanoparticles of less than 1 micron or a continuous film) comprising at least one element selected from alkali metal, alkaline earth metal, aluminum, zinc, copper, and silver in combination with at least two elements selected from oxygen, sulfur, silicon, phosphorus, nitrogen, boron, gallium, indium, tin, germanium, arsenic, antimony, bismuth, transition metals, and lanthanides. Also described is a battery comprising an anode, a cathode, and a solid electrolyte (corresponding to the above ionically conductive composition) in contact with or as part of the anode and/or cathode. Further described is a thermal (e.g., plasma-based) method of producing the ionically conductive composition. Further described is a method for using an additive manufacturing (AM) process to produce an object constructed of the ionically conductive composition by use of particles of the ionically conductive composition as a feed material in the AM process.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 4, 2021
    Inventors: Andrew K. Kercher, Andrew S. Westover, Michael Naguib Abdelmalak, Nancy J. Dudney
  • Patent number: 10424792
    Abstract: A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 24, 2019
    Assignee: UT-Battelle LLC
    Inventors: Nancy J. Dudney, Chengdu Liang, Jagjit Nanda, Gabriel M. Veith, Yoongu Kim, Surendra Kumar Martha
  • Patent number: 10374234
    Abstract: A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 6, 2019
    Assignee: UT-BATTELLE LLC
    Inventors: Michael Naguib Abdelmalak, Srikanth Allu, Nancy J. Dudney, Jianlin Li, Srdjan Simunovic, Hsin Wang
  • Publication number: 20190198858
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 27, 2019
    Inventors: Nancy J. DUDNEY, Edward W. HAGAMAN, Gabriel M. VEITH, Lance W. GILL, Robert L. SACCI
  • Patent number: 10326164
    Abstract: A solid electrolyte for a lithium battery includes Li3+xGexAs1-xS4 where x=0 to 0.50. The value of x can be a range of any high value and any lower value from 0 to 0.50. For example, x can be 0.25 to 0.50, and x can be 0.3 to 0.4, among many other possible ranges. In one embodiment x=0.33 such that the solid electrolyte is Li3.334Ge0.334As0.666S4. A solid electrolyte for a lithium battery can include LiAsS4 wherein ½ to ? of the As is substituted with Ge. A lithium battery and a method for making a lithium battery are also disclosed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 18, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Ezhiylmurugan Rangasamy, Gayatri Sahu
  • Publication number: 20190157712
    Abstract: A lithium ion battery includes a positive electrode comprising carbon fibers, a binder composition with conductive carbon, and a lithium rich composition. The lithium rich composition comprises at least one selected from the group consisting of Li1+x(My MzII MwIII)O2 where x+y+z=1, and xLi2MnO3(1?x)LiMO2, where x=0.2-0.7, and where M, MII and MIII are interchangeably manganese, nickel and cobalt, and LiM2-xMxIIO4, where M and MII are manganese and nickel, respectively, with x=0.5. A negative electrode comprises carbon fibers having bound thereto silicon nanoparticles, and a mesophase pitch derived carbon binder between the silicon nanoparticles and the carbon fibers. An electrolyte is interposed between the positive electrode and the negative electrode. Methods of making positive and negative electrodes are also disclosed.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Jagjit NANDA, Nancy J. DUDNEY, Chaitanya Kumar NARULA, Sreekanth PANNALA, Raymond Robert UNOCIC, Surendra Kumar MARTHA
  • Patent number: 10263246
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: April 16, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Nancy J. Dudney, Edward W. Hagaman, Gabriel M. Veith, Lance W. Gill, Robert L. Sacci
  • Patent number: 10224565
    Abstract: A lithium ion battery includes a positive electrode comprising carbon fibers, a binder composition with conductive carbon, and a lithium rich composition. The lithium rich composition comprises at least one selected from the group consisting of Li1+x(My MzII MwIII)O2 where x+y+z+w=1, and xLi2MnO3(1?x)LiMO2, where x=0.2-0.7, and where M, MII and MIII are interchangeably manganese, nickel and cobalt, and LiM2?xMxIIO4, where M and MII are manganese and nickel, respectively, with x=0.5. A negative electrode comprises carbon fibers having bound thereto silicon nanoparticles, and a mesophase pitch derived carbon binder between the silicon nanoparticles and the carbon fibers. An electrolyte is interposed between the positive electrode and the negative electrode. Methods of making positive and negative electrodes are also disclosed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 5, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Jagjit Nanda, Nancy J. Dudney, Chaitanya Kumar Narula, Sreekanth Pannala, Raymond Robert Unocic, Surendra Kumar Martha
  • Patent number: 10199633
    Abstract: An electrode and a related method of manufacture are provided. The electrode includes a self-aligning active material having short fiber powders with a cylindrical morphology to increase the packing density from 0.74 to nearly 0.91. The short fiber powders self-align during a slurring coating process as a result of shear forces between a die and a foil. The resulting coating includes parallel short fibers in a closed packed arrangement, providing an increased volumetric capacity of at least approximately 17%.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 5, 2019
    Assignee: UT-Battelle, LLC
    Inventors: Orlando Rios, Claus Daniel, Nancy J. Dudney, Wyatt E. Tenhaeff
  • Patent number: 10170750
    Abstract: A lithium sulfur cell has a cathode including Li3PS4+n (0<n<9), an electrolyte, and an anode comprising lithium. A cathode for a lithium sulfur cell is also disclosed.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: January 1, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Zhan Lin, Zengcai Liu
  • Publication number: 20180069244
    Abstract: A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Michael Naguib Abdelmalak, Srikanth Allu, Nancy J. Dudney, Jianlin Li, Srdjan Simunovic, Hsin Wang
  • Patent number: 9847531
    Abstract: A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: December 19, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Michael Naguib Abdelmalak, Srikanth Allu, Nancy J. Dudney, Jianlin Li, Srdjan Simunovic, Hsin Wang
  • Patent number: 9837665
    Abstract: A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 5, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Nancy J. Dudney, Chengdu Liang, Jagjit Nanda, Gabriel M. Veith, Yoongu Kim, Surendra Kumar Martha
  • Patent number: 9722245
    Abstract: The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: August 1, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Jane Y. Howe
  • Publication number: 20170200952
    Abstract: A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 13, 2017
    Inventors: Nancy J. Dudney, Chengdu Liang, Jagjit Nanda, Gabriel M. Veith, Yoongu Kim, Surendra Kumar Martha