Patents by Inventor Nancy Kerr Del Grande

Nancy Kerr Del Grande has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11243329
    Abstract: A method for gathering reference data for use in planning and interpreting infrared surveys for the purpose of detecting and locating underground features, such as tunnels, voids, or manmade devices. Measurements, images, or observations at a site having known underground features are recorded. Recorded details include a combination temperatures at or near a soil surface at multiple points across the site in addition to above surface factors such as shading, weather conditions, and objects or foliage. Analysis of the details recorded from the site having known underground features yields quantitative estimates of the effects of various above and below surface factors on temperatures at or near the soil surface.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: February 8, 2022
    Inventor: Nancy Kerr Del Grande
  • Publication number: 20200278472
    Abstract: A method for gathering reference data for use in planning and interpreting infrared surveys for the purpose of detecting and locating underground features, such as tunnels, voids, or manmade devices. Measurements, images, or observations at a site having known underground features are recorded. Recorded details include a combination temperatures at or near a soil surface at multiple points across the site in addition to above surface factors such as shading, weather conditions, and objects or foliage. Analysis of the details recorded from the site having known underground features yields quantitative estimates of the effects of various above and below surface factors on temperatures at or near the soil surface.
    Type: Application
    Filed: May 8, 2020
    Publication date: September 3, 2020
    Inventor: Nancy Kerr Del Grande
  • Patent number: 8787619
    Abstract: A temporal thermal survey method to locate at a given area whether or not there is a subsurface object or void site. The method uses thermal inertia change detection. It locates temporal heat flows from naturally heated subsurface objects or faulty structures such as corrosion damage. The added value over earlier methods is the use of empirical methods to specify the optimum times for locating subsurface objects or voids amidst clutter and undisturbed host materials. Thermal inertia, or thermal effusivity, is the bulk material resistance to temperature change. Surface temperature highs and lows are shifted in time at the subsurface object or void site relative to the undisturbed host material sites. The Dual-band Infra-Red Effusivity Computed Tomography (DIRECT) method verifies the optimum two times to detect thermal inertia outliers at the subsurface object or void border with undisturbed host materials.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: July 22, 2014
    Inventor: Nancy Kerr Del Grande
  • Publication number: 20130322693
    Abstract: A temporal thermal survey method to locate at a given area whether or not there is a subsurface object or void site. The method uses thermal inertia change detection. It locates temporal heat flows from naturally heated subsurface objects or faulty structures such as corrosion damage. The added value over earlier methods is the use of empirical methods to specify the optimum times for locating subsurface objects or voids amidst clutter and undisturbed host materials. Thermal inertia, or thermal effusivity, is the bulk material resistance to temperature change. Surface temperature highs and lows are shifted in time at the subsurface object or void site relative to the undisturbed host material sites. The Dual-band Infra-Red Effusivity Computed Tomography (DIRECT) method verifies the optimum two times to detect thermal inertia outliers at the subsurface object or void border with undisturbed host materials.
    Type: Application
    Filed: July 16, 2013
    Publication date: December 5, 2013
    Inventor: Nancy Kerr Del Grande
  • Patent number: 8494220
    Abstract: A temporal thermal survey method to locate at a given area whether or not there is a subsurface object or void site. The method uses thermal inertia change detection. It locates temporal heat flows from naturally heated subsurface objects or faulty structures such as corrosion damage. The added value over earlier methods is the use of empirical methods to specify the optimum times for locating subsurface objects or voids amidst clutter and undisturbed host materials. Thermal inertia, or thermal effusivity, is the bulk material resistance to temperature change. Surface temperature highs and lows are shifted in time at the subsurface object or void site relative to the undisturbed host material sites. The Dual-band Infra-Red Effusivity Computed Tomography (DIRECT) method verifies the optimum two times to detect thermal inertia outliers at the subsurface object or void border with undisturbed host materials.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 23, 2013
    Inventor: Nancy Kerr Del Grande
  • Publication number: 20120134533
    Abstract: A temporal thermal survey method to locate at a given area whether or not there is a subsurface object or void site. The method uses thermal inertia change detection. It locates temporal heat flows from naturally heated subsurface objects or faulty structures such as corrosion damage. The added value over earlier methods is the use of empirical methods to specify the optimum times for locating subsurface objects or voids amidst clutter and undisturbed host materials. Thermal inertia, or thermal effusivity, is the bulk material resistance to temperature change. Surface temperature highs and lows are shifted in time at the subsurface object or void site relative to the undisturbed host material sites. The Dual-band Infra-Red Effusivity Computed Tomography (DIRECT) method verifies the optimum two times to detect thermal inertia outliers at the subsurface object or void border with undisturbed host materials.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 31, 2012
    Inventor: Nancy Kerr Del Grande
  • Patent number: 4005289
    Abstract: A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.
    Type: Grant
    Filed: January 5, 1976
    Date of Patent: January 25, 1977
    Assignee: The United States of America as represented by the United States Energy Research and Development Administration
    Inventor: Nancy Kerr Del Grande