Patents by Inventor Nanna Albaek

Nanna Albaek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11155816
    Abstract: The invention relates to the field of oligonucleotide therapeutics, and in particular to the use of a cleavable, e.g. a phosphodiester region covalently attached to a conjugate, a targeting group or blocking group to enhance the properties of the oligonucleotides, for example to improve the therapeutic index.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 26, 2021
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Nanna Albaek, Henrik Hansen, Susanne Kammler, Jacob Ravn, Henrik Orum
  • Patent number: 11091764
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: August 17, 2021
    Assignee: ROCHE INNOVATION CENTER COPENHAGEN A/S
    Inventors: Nanna Albæk, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Publication number: 20210238601
    Abstract: The invention relates to the field of oligonucleotide therapeutics, and in particular to the use of a cleavable, e.g. a phosphodiester region covalently attached to a conjugate, a targeting group or blocking group to enhance the properties of the oligonucleotides, for example to improve the therapeutic index.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 5, 2021
    Inventors: Nanna Albaek, Henrik Hansen, Susanne Kammler, Jacob Ravn, Henrik Orum
  • Publication number: 20210017214
    Abstract: This invention generally relates to the field of phosphoramidite derivatives. In particular, the invention relates to N-Acetylgalactosamine phosphoramidite molecules and to conjugates of nucleic acid molecules with N-Acetylgalactosamine containing molecules. Also provided are methods for preparation of these molecules and possible uses thereof, in particular in medicine.
    Type: Application
    Filed: August 6, 2020
    Publication date: January 21, 2021
    Inventors: Nanna Albaek, Jacob Ravn, Christoph Rosenbohm
  • Patent number: 10815481
    Abstract: The invention relates to a method of identifying stereodefined phosphorothioate oligonucleotide variants with reduced toxicity by creating and screening libraries of stereodefined chiral phosphorothioate variants for compounds with reduced toxicity, either in vitro or in vivo.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 27, 2020
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Henrik Frydenlund Hansen, Troels Koch, Sabine Sewing, Nanna Albaek, Peter Hagedorn, Jacob Ravn, Christoph Rosenbohm, Annie Moisan, Marcel Gubler
  • Publication number: 20200318103
    Abstract: The present invention relates to methods for identifying improved stereodefined phosphorothioate oligonucleotide variants of antisense oligonucleotides utilising sub-libraries of partially stereodefined oligonucleotides. The methods allow for the efficient identification of stereodefined variants with improved properties, such as enhanced in vitro or in vivo activity, enhanced efficacy, enhanced specific activity, reduced toxicity, altered biodistribution, enhanced cellular or tissue uptake, and/or enhanced target specificity (reduced off-target effects).
    Type: Application
    Filed: April 13, 2020
    Publication date: October 8, 2020
    Inventors: Konrad Bleicher, Henrik Frydenlund Hansen, Troels Koch, Nanna Albaek, Erik Daa Funder
  • Publication number: 20200291056
    Abstract: The present invention relates to the field of stereodefined phosphorothioate oligonucleotidess and to nucleoside monomers and methods of synthesis thereof. Herein are disclosed acyl protected L-LNA-G monomers which have improved solubility and stability characteristics, and result in improved efficacy in oligonucleotide synthesis.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 17, 2020
    Inventors: Nanna Albaek, Jacob Ravn, Erik Daa Funder
  • Publication number: 20200248186
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Application
    Filed: September 4, 2019
    Publication date: August 6, 2020
    Inventors: Nanna ALBÆK, Maj HEDTJÄRN, Marie Wickstrom LINDHOLM, Niels Fisker NIELSEN, Andreas PETRI, Jacob RAVN
  • Patent number: 10443058
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 15, 2019
    Assignee: ROCHE INNOVATION CENTER COPENHAGEN A/S
    Inventors: Nanna Albæk, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Patent number: 10385342
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 20, 2019
    Assignee: ROCHE INNOVATION CENTER COPENHAGEN A/S
    Inventors: Nanna Albæk, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Patent number: 10370668
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 6, 2019
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Nanna Albæk, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Patent number: 10358643
    Abstract: The invention relates to the field of oligonucleotide therapeutics, and in particular to poly oligo oligonucleotides conjugates where two or more antisense oligonucleotides are covalently linked by physiologically labile linkers, and to a biocleavable functional group such as a conjugate group.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: July 23, 2019
    Assignee: Hoffmann-La Roche, Inc.
    Inventors: Nanna Albaek, Henrik Frydenlund Hansen, Susanne Kammler, Morten Lindow, Jacob Ravn, Mark Turner
  • Publication number: 20190144488
    Abstract: This invention generally relates to the field of phosphoramidite derivatives. In particular, the invention relates to N-Acetylgalactosamine (GalNAc) compounds, in particular phosphoramidite or phosphonoamidite molecules of formula (I) with only one GalNAc moiety (formula II) and to conjugates of nucleic acid molecules with such N-Acetylgalactosamine containing molecules. Also provided are methods for preparation of these molecules and possible uses thereof, in particular in medicine. Wherein R1 is H or C1-6alkyl; R2 is a triphenylmethyl-based hydroxyl protecting group R3 is a phosphorus-containing group, particularly a phosphoramidite or a phosphonoamidite group, and K is represented by the general formula (II).
    Type: Application
    Filed: April 18, 2007
    Publication date: May 16, 2019
    Inventors: Nanna Albaek, Jacob Ravn
  • Publication number: 20180312847
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 1, 2018
    Inventors: Nanna ALBÆK, Maj HEDTJÄRN, Marie Wickstrom LINDHOLM, Niels Fisker NIELSEN, Andreas PETRI, Jacob RAVN
  • Publication number: 20180312846
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 1, 2018
    Inventors: Nanna ALBÆK, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Patent number: 10077443
    Abstract: The invention relates to the field of oligonucleotide therapeutics, and in particular to the use of a cleavable, e.g. a phosphodiester region covalently attached to a conjugate, a targeting group or blocking group to enhance the properties of the oligonucleotides, for example to improve the therapeutic index.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: September 18, 2018
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Nanna Albaek, Henrik Frydenlund Hansen, Susanne Kammler, Jacob Ravn, Henrik Orum
  • Publication number: 20180251764
    Abstract: The invention relates to the field of oligonucleotide therapeutics, and in particular to the use of a cleavable, e.g. a phosphodiester region covalently attached to a conjugate, a targeting group or blocking group to enhance the properties of the oligonucleotides, for example to improve the therapeutic index.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 6, 2018
    Inventors: Nanna Albaek, Henrik Hansen, Susanne Kammler, Jacob Ravn, Henrik Orum
  • Publication number: 20180216116
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Application
    Filed: December 8, 2017
    Publication date: August 2, 2018
    Inventors: Nanna Albaek, Maj Hedtjärn, Marie Wickstrom Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn
  • Publication number: 20180112217
    Abstract: The present invention provides stereodefined phosphorothioate LNA oligonucleotide, comprising at least one stereodefined phosphorothioate linkage between a LNA nucleoside and a subsequent (3?) nucleoside.
    Type: Application
    Filed: November 18, 2015
    Publication date: April 26, 2018
    Inventors: Henrik Frydenlund Hansen, Troels Koch, Nanna Albaek, Jacob Ravn, Christoph Rosenbohm, Peter Hagedorn
  • Patent number: 9879265
    Abstract: The present invention relates to oligomeric compounds and conjugates thereof that target Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) PCSK9 mRNA in a cell, leading to reduced expression of PCSK9. Reduction of PCSK9 expression is beneficial for a range of medical disorders, such as hypercholesterolemia and related disorders.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 30, 2018
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Nanna Albæk, Maj Hedtjärn, Marie Lindholm, Niels Fisker Nielsen, Andreas Petri, Jacob Ravn