Patents by Inventor Nantakan Wongkasem

Nantakan Wongkasem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11329389
    Abstract: A method for fabricating a hyperbolic metamaterial coating having a near-zero refractive index is disclosed. The direction of propagating light changes by means of generating subwavelength structures that alter the coatings permittivity and permeability. The coating can be deposited on lenses or incorporated into optical devices. This type of metamaterial can be utilized to direct light towards sensors or to collect light efficiently.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: May 10, 2022
    Assignee: Board Of Regents, The University of Texas System
    Inventors: Nantakan Wongkasem, Andres Ochoa
  • Publication number: 20200036099
    Abstract: A method for fabricating a hyperbolic metamaterial coating having a near-zero refractive index is disclosed. The direction of propagating light changes by means of generating subwavelength structures that alter the coatings permittivity and permeability. The coating can be deposited on lenses or incorporated into optical devices. This type of metamaterial can be utilized to direct light towards sensors or to collect light efficiently.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 30, 2020
    Inventors: Nantakan Wongkasem, Andres Ochoa
  • Patent number: 8271241
    Abstract: A metamaterial includes a dielectric substrate and an array of discrete resonators at the dielectric substrate, wherein each of the discrete resonators has a shape that is independently selected from: an F-type shape; an E-type shape; or a y-type shape. A parameter of a chiral metamaterial is determined and a chiral metamaterial having such a parameter is prepared by the use of a model of the chiral metamaterial. The metamaterial model includes an array of discrete resonators. In one embodiment, each of the discrete resonators has a shape that is independently selected from the group consisting of: an F-type shape; an E-type shape; and a y-type shape. To the metamaterial model, electromagnetic (EM) radiation, preferably plane-polarized EM radiation in a visible, ultraviolet or near-infrared region, having at least one wavelength that is larger than the largest dimension of at least resonator of the metamaterial model, is applied.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: September 18, 2012
    Assignee: University of Massachusetts Lowell
    Inventors: Alkim Akyurtlu, Kenneth A. Marx, Nantakan Wongkasem
  • Publication number: 20100141358
    Abstract: A metamaterial includes a dielectric substrate and an array of discrete resonators at the dielectric substrate, wherein each of the discrete resonators has a shape that is independently selected from: an F-type shape; an E-type shape; or a y-type shape. A parameter of a chiral metamaterial is determined and a chiral metamaterial having such a parameter is prepared by the use of a model of the chiral metamaterial. The metamaterial model includes an array of discrete resonators. In one embodiment, each of the discrete resonators has a shape that is independently selected from the group consisting of: an F-type shape; an E-type shape; and a y-type shape. To the metamaterial model, electromagnetic (EM) radiation, preferably plane-polarized EM radiation in a visible, ultraviolet or near-infrared region, having at least one wavelength that is larger than the largest dimension of at least resonator of the metamaterial model, is applied.
    Type: Application
    Filed: September 19, 2007
    Publication date: June 10, 2010
    Applicant: University of Massachusetts Lowell
    Inventors: Alkim Akyurtlu, Kenneth A. Marx, Nantakan Wongkasem