Patents by Inventor Naohiko Ukawa

Naohiko Ukawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9789438
    Abstract: An air pollution control apparatus includes: a denitration unit that removes nitrogen oxides from a flue gas; a desulfurization unit that is installed on a gas flow downstream side of the denitration unit to remove the sulfur oxides in a flue gas 11B; a finish denitration and desulfurization unit that is installed on the gas flow downstream side of the desulfurization unit to perform finish denitration and desulfurization of NO2 and SO2; and a carbon dioxide recovery unit that is installed on the gas flow downstream side of the finish denitration and desulfurization unit to remove and recover the carbon dioxide in a flue gas.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 17, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Naohiko Ukawa
  • Publication number: 20150125353
    Abstract: An air pollution control apparatus includes: a denitration unit that removes nitrogen oxides from a flue gas; a desulfurization unit that is installed on a gas flow downstream side of the denitration unit to remove the sulfur oxides in a flue gas 11B; a finish denitration and desulfurization unit that is installed on the gas flow downstream side of the desulfurization unit to perform finish denitration and desulfurization of NO2 and SO2; and a carbon dioxide recovery unit that is installed on the gas flow downstream side of the finish denitration and desulfurization unit to remove and recover the carbon dioxide in a flue gas.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 7, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Naohiko Ukawa
  • Patent number: 8420037
    Abstract: An air pollution control system includes a desulfurization apparatus 13 that reduces sulfur oxide contained in flue gas 12 supplied from a boiler 11; and a CO2 recovery apparatus 15 including a CO2 absorber 21 that reduces CO2 contained in flue gas 12 that has been desulfurized by the desulfurization apparatus, with the aid of an amine absorbent and an absorbent regenerator 22 that regenerates the amine absorbent. Part 14a of desulfurized flue gas 14 containing SOx is supplied to treated flue gas 16, from which CO2 has been reduced and which is discharged from a top portion of the CO2 absorber 21, so that remaining mist amine accompanying the treated flue gas 16 is neutralized to amine sulfate or amine sulfite.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaki Iijima, Tsuyoshi Oishi, Takashi Kamijo, Hiroshi Tanaka, Hiromitsu Nagayasu, Naohiko Ukawa
  • Publication number: 20120328501
    Abstract: An air pollution control system includes a desulfurization apparatus 13 that reduces sulfur oxide contained in flue gas 12 supplied from a boiler 11; and a CO2 recovery apparatus 15 including a CO2 absorber 21 that reduces CO2 contained in flue gas 12 that has been desulfurized by the desulfurization apparatus, with the aid of an amine absorbent and an absorbent regenerator 22 that regenerates the amine absorbent. Part 14a of desulfurized flue gas 14 containing SOx is supplied to treated flue gas 16, from which CO2 has been reduced and which is discharged from a top portion of the CO2 absorber 21, so that remaining mist amine accompanying the treated flue gas 16 is neutralized to amine sulfate or amine sulfite.
    Type: Application
    Filed: November 28, 2011
    Publication date: December 27, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Tsuyoshi Oishi, Takashi Kamijo, Hiroshi Tanaka, Hiromitsu Nagayasu, Naohiko Ukawa
  • Patent number: 6863875
    Abstract: In a flue gas treating system, an absorption tower (21), a reheating section (22) and a fan (23) are arranged in line on a vertical axis so as to function as at least a part of a stack for emitting the treated flue gas into the atmosphere. Moreover, in a flue gas treating process, the amount of ammonia injected in the denitration step (a denitrator (2)) and/or the amount of ammonia at a point downstream of the denitration step are determined so as to be on such an excessive level that ammonia or ammonium salt will remain in the flue gas introduced into the desulfurization step (absorption tower (21)). Thus, the size and cost of the equipment can be reduced.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 8, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shinichiro Kotake, Kazuaki Kimura, Kazumitsu Suzuki, Naohiko Ukawa, Toru Takashina
  • Patent number: 6773680
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: August 10, 2004
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6740297
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: May 25, 2004
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Publication number: 20040033172
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Application
    Filed: November 14, 2002
    Publication date: February 19, 2004
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6656440
    Abstract: A method and system for desulfurizing flue gas in which desulfurization is effected by bringing absorbent slurry containing limestone into contact with flue gas. The method classifies absorbent slurry extracted from a desulfurization absorber, returns a fine-side fluid to the desulfurization absorber, and sends a coarse-side fluid to a solid-liquid separator. Supplied limestone powder is mixed to yield limestone slurry by a solid-liquid mixer, and the limestone slurry is classified, sending the small-particle fluid component thereof to the desulfurization absorber, and sending the large-particle fluid component thereof to a limestone fine grinder. And, limestone contained in the large-particle fluid component is finely ground by the limestone fine grinder and the finely ground limestone is sent to the desulfurization absorber.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 2, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toru Takashina, Naohiko Ukawa, Kenji Inoue
  • Publication number: 20030077209
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Application
    Filed: November 14, 2002
    Publication date: April 24, 2003
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Publication number: 20030072692
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Application
    Filed: November 14, 2002
    Publication date: April 17, 2003
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6517792
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: February 11, 2003
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6511636
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: January 28, 2003
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Publication number: 20030007900
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Application
    Filed: September 27, 1999
    Publication date: January 9, 2003
    Inventors: TAKU SHIMIZU, KAZUAKI KIMURA, KIYOSHI OKAZOE, ATSUSHI TATANI, NAOHIKO UKAWA, MASAO HINO, SUSUMU OKINO, TAKASHI HARUKI, TORU TAKASHINA, EIJI OCHI
  • Publication number: 20020168311
    Abstract: The present invention provides a method for desulfurizing flue gas in which desulfurization is effected by bringing absorbent slurry containing limestone into contact with flue gas, comprising the steps of classifying absorbent slurry extracted from a desulfurization absorber, returning a fine-side fluid to the desulfurization absorber, and sending a coarse-side fluid to a solid-liquid separator; mixing supplied limestone powder to yield limestone slurry by a solid-liquid mixer; classifying the limestone slurry, sending the small-particle fluid component thereof to the desulfurization absorber, and sending the large-particle fluid component thereof to a limestone fine grinder; and finely grinding limestone contained in the large-particle fluid component by the limestone fine grinder and sending the finely ground limestone to the desulfurization absorber, and a system for carrying out the above-described method.
    Type: Application
    Filed: September 5, 2001
    Publication date: November 14, 2002
    Inventors: Toru Takashina, Naohiko Ukawa, Kenji Inoue
  • Publication number: 20020009403
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350° C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Application
    Filed: August 8, 2001
    Publication date: January 24, 2002
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6277327
    Abstract: This invention relates to equipment for treating the aforesaid waste plastics directly with supercritical water, and an object thereof is to provide a method for the anticorrosive treatment of waste plastics treating equipment which makes it possible to use inexpensive stainless steel. Waste plastics treating equipment made of stainless steel is charged with a predetermined amount of an aqueous solution containing at least one alkali metal salt, and this aqueous solution is deaerated until its dissolved oxygen content is reduced to 0.5 mg/L or less. After the temperature and pressure of the equipment are raised until supercritical conditions are established, these temperature and pressure are maintained for a predetermined period of time.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: August 21, 2001
    Assignees: Tohoku Electric Power Company, Inc., Mitsubishi Heavy Industries, Ltd.
    Inventors: Masanori Tabata, Naohiko Ukawa, Masato Kaneko, Kazuto Kobayashi, Shigeo Hasegawa, Wataru Matsubara, Kenji Iwasaki, Yoshihisa Saito, Takehiko Moriya
  • Patent number: 6203598
    Abstract: This invention relates to a flue gas treating process including a heat recovery step for recovering heat from flue gas by means of a heat exchanger (4) and thereby cooling the flue gas, and a subsequent absorption step for bringing the flue gas into gas-liquid contact with an absorbing fluid (D) in absorption towers (12, 13) so as to remove at least SO2 present in the flue gas by absorption into the absorbing fluid (D), which is characterized, for example, in that a powder addition step for spraying a powder collectable in the absorption step into the flue gas is provided prior to the heat recovery step. This invention makes it possible to provide a flue gas treating process in which a countermeasure against SO3 present in flue gas can be easily achieved without resorting to ammonia injection and the flue gas can further be purified without the disadvantage of causing the injected substance to remain in the treated flue gas.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: March 20, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigeo Hasegawa, Naohiko Ukawa, Susumu Okino, Koichiro Iwashita, Kazuaki Kimura, Atsushi Yoshioka, Yoshimitsu Kawanishi, Shoichi Onishi, Toru Takashina, Toyoshi Nakagawa
  • Patent number: 6113863
    Abstract: Five combustion exhaust gas treatment systems capable of removing dust and selenium (Se) in combustion exhaust gas and making harmless are proposed: (1) combustion exhaust gas is cooled to 350.degree. C. or less, dust is separated, Se is transformed into insoluble compound, and Se is separated; (2) combustion exhaust gas is cooled to 350.degree. C. or less, dust is separated, Se elution preventive agent is added, and dust is formed into scale; (3) dust in combustion exhaust gas is collected by dust collector, dust is formed into slurry by making use of part of circulation liquid in desulfurization apparatus, and tetravalent Se in dust slurry is transformed into insoluble compound, which is separated into solid and liquid; (4) dust is separated from combustion exhaust gas by dust collector, and it is heated to gasify Se, and is led into desulfurization apparatus, etc.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: September 5, 2000
    Assignee: Mitsubishi Jukogyo Kabushiki Kaishi
    Inventors: Taku Shimizu, Kazuaki Kimura, Kiyoshi Okazoe, Atsushi Tatani, Naohiko Ukawa, Masao Hino, Susumu Okino, Takashi Haruki, Toru Takashina, Eiji Ochi
  • Patent number: 6107532
    Abstract: Disclosed is an economical process for treating a large amount of plastics waste in which thermoplastics, crosslinked plastics, thermosetting plastics or a mixture thereof can be continuously and rapidly degraded and converted into oil without sorting various types of plastics waste. According to this process, powdered plastics obtained by grinding thermoplastics, crosslinked plastics, thermosetting plastics or a mixture thereof is mixed with water to form a slurry, and a dispersing agent such as a water-absorbing resin, a water-soluble polymer or a surface-active agent is added thereto. The resulting mixed slurry is fed to a tubular continuous reactor where the powdered plastics is degraded under reaction conditions causing the water to be in or near its supercritical region. Finally, oil is recovered from the reaction product.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: August 22, 2000
    Assignees: Tohoku Electric Power Co., Inc., Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshihisa Saito, Takehiko Moriya, Masaki Iijima, Wataru Matsubara, Kazuto Kobayashi, Naohiko Ukawa