Patents by Inventor Naokazu Kumagai

Naokazu Kumagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10343147
    Abstract: A methanation reaction catalyst for methanation by allowing carbon dioxide to react with hydrogen, wherein the methanation reaction catalyst includes a stabilized zirconia support having a tetragonal crystal structure and in which Ca and Ni are incorporated in the crystal structure, and Ni in the metal state supported on the stabilized zirconia support, includes the following in atomic % based on metals in the element state, A) Zr composing the stabilized zirconia support: 6 to 62 atomic %, B) Ca incorporated in the crystal structure: 1 to 20 atomic %, and C) a total of Ni incorporated in the crystal structure and Ni supported on the stabilized zirconia support: 30 to 90 atomic %, and the atomic ratio of Ca/(Zr+Ca) is 0.14 to 0.25.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: July 9, 2019
    Assignee: HITACHI ZOSEN CORPORATION
    Inventors: Koji Hashimoto, Hiroyuki Takano, Kouichi Izumiya, Naokazu Kumagai
  • Patent number: 9732010
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element(s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: August 15, 2017
    Assignees: HITACHI ZOSEN CORPORATION
    Inventors: Koji Hashimoto, Hiroyuki Takano, Kouichi Izumiya, Naokazu Kumagai, Zenta Kato, Hiroyuki Shinomiya
  • Patent number: 9731278
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element(s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: August 15, 2017
    Assignees: HITACHI ZOSEN CORPORATION, KOJI HASHIMOTO
    Inventors: Koji Hashimoto, Hiroyuki Takano, Kouichi Izumiya, Naokazu Kumagai, Zenta Kato, Hiroyuki Shinomiya
  • Publication number: 20170209851
    Abstract: A methanation reaction catalyst for methanation by allowing carbon dioxide to react with hydrogen, wherein the methanation reaction catalyst includes a stabilized zirconia support having a tetragonal crystal structure and in which Ca and Ni are incorporated in the crystal structure, and Ni in the metal state supported on the stabilized zirconia support, includes the following in atomic % based on metals in the element state, A) Zr composing the stabilized zirconia support: 6 to 62 atomic %, B) Ca incorporated in the crystal structure: 1 to 20 atomic %, and C) a total of Ni incorporated in the crystal structure and Ni supported on the stabilized zirconia support: 30 to 90 atomic %, and the atomic ratio of Ca/(Zr+Ca) is 0.14 to 0.25.
    Type: Application
    Filed: July 16, 2015
    Publication date: July 27, 2017
    Applicant: HITACHI ZOSEN CORPORATION
    Inventors: Koji HASHIMOTO, Hiroyuki TAKANO, Kouichi IZUMIYA, Naokazu KUMAGAI
  • Publication number: 20170166492
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element(s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Applicants: HITACHI ZOSEN CORPORATION
    Inventors: Koji HASHIMOTO, Hiroyuki TAKANO, Kouichi IZUMIYA, Naokazu KUMAGAI, Zenta KATO, Hiroyuki SHINOMIYA
  • Publication number: 20170165643
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element (s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Applicants: HITACHI ZOSEN CORPORATION, Koji
    Inventors: Koji HASHIMOTO, Hiroyuki TAKANO, Kouichi IZUMIYA, Naokazu KUMAGAI, Zenta KATO, Hiroyuki SHINOMIYA
  • Patent number: 9617196
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element(s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 11, 2017
    Assignees: HITACHI ZOSEN CORPORATION
    Inventors: Koji Hashimoto, Hiroyuki Takano, Kouichi Izumiya, Naokazu Kumagai, Zenta Kato, Hiroyuki Shinomiya
  • Patent number: 7914653
    Abstract: Disclosed is an anode for electrochemical reactions, such as electrolysis and electrodeposition, comprising a titanium substrate covered with metal oxide, in which the amount of platinum group element(s) is decreased in comparison with the ordinary anode of platinum group element oxides so as to decrease the cost and to mitigate the problem of natural resources, and further, durability of the anode is improved. The electrocatalyst of the anode is multiple oxide of platinum group element(s), and Sn and Sb. The cationic ratio of Sn to Sb is 1-40 and the sum of Sn and Sb is 1-90 cationic %. The electrocatalyst is prepared by coating mixed solutions of the soluble salts on the substrate and baking, so as to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 29, 2011
    Assignees: Koji Hashimoto, Daiki Ataka Engineering Co., Ltd.
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Patent number: 7811426
    Abstract: Disclosed is an oxygen evolution anode for evolving oxygen without chlorine evolution in electrolysis of aqueous solutions of sodium chloride having high performance and durability with decreased amount of the precious metal(s) in the intermediate layer to decrease manufacturing cost and to ease problem of the resources. The oxygen evolution anode comprises an electroconductive substrate, an intermediate layer and an electrocatalyst. The intermediate layer prepared by calcination consists of multiple oxide of the platinum group element(s), Sn and Sb, with the Sn/Sb ratio of 1-40 and with the sum of Sn and Sb of 90 cationic % or less. The electrocatalyst is prepared by anodic deposition and consists of 0.1-3 cationic % of Sn, 0.2-20 cationic % of Mo and/or W and the balance of Mn.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 12, 2010
    Assignees: Daiki Ataka Engineering Co., Ltd.
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Patent number: 7803260
    Abstract: Disclosed is an oxygen evolution electrode for formation of only oxygen without formation of chlorine at anode in the performance and the durability of the anode is so high that they are, even in strong acid, at the same level as that in neutral solution. The electrode is prepared by anodic deposition of multiple oxide consisting of Mn—Mo—Sn, Mo—W—Sn or Mn—Mo—W—Sn on an IrO2-coated titanium substrate. The multiple oxide are composed of Mn as the main component, 0.1-3 cationic % of Sn and 0.2-20 cationic % of Mo and/or W.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 28, 2010
    Assignees: Daiki Ataka Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Publication number: 20090042998
    Abstract: Disclosed is a catalyst for methanation reaction producing methane with high conversion by reaction of hydrogen with carbon dioxide, or a gas mixture of carbon dioxide and carbon monoxide, or a gas mixture containing these compounds as the main components. The catalyst is prepared by the steps of mixing (A) aqueous zirconia sol with salts of (B) stabilizing element(s), which is selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ca and Mg, and (C) iron group element(s), drying and calcining the mixture to obtain a catalyst precursor, and subsequent reduction of the precursor. The catalyst comprises, by atomic %, A: 18-70%, B: 1-20% and C: 25-80% based on the elemental states of the metals. The catalyst is characterized by multiple oxide of tetragonal zirconia structure, in which not only the stabilizing element(s) but also a part of the iron group element(s) is incorporated, and on which the iron group element(s) in the metallic state is supported.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 12, 2009
    Applicants: DAIKI ATAKA ENGINEERING CO., LTD., Koji HASHIMOTO
    Inventors: Koji HASHIMOTO, Hiroyuki Takano, Kouichi Izumiya, Naokazu Kumagai, Zenta Kato, Hiroyuki Shinomiya
  • Publication number: 20080149476
    Abstract: Disclosed is an anode for electrochemical reactions, such as electrolysis and electrodeposition, comprising a titanium substrate covered with metal oxide, in which the amount of platinum group element(s) is decreased in comparison with the ordinary anode of platinum group element oxides so as to decrease the cost and to mitigate the problem of natural resources, and further, durability of the anode is improved. The electrocatalyst of the anode is multiple oxide of platinum group element(s), and Sn and Sb. The cationic ratio of Sn to Sb is 1-40 and the sum of Sn and Sb is 1-90 cationic %. The electrocatalyst is prepared by coating mixed solutions of the soluble salts on the substrate and baking, so as to convert the metal salts to metal oxides.
    Type: Application
    Filed: October 25, 2007
    Publication date: June 26, 2008
    Applicants: Daiki Ataka Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Publication number: 20080116064
    Abstract: Disclosed is an oxygen evolution anode for evolving oxygen without chlorine evolution in electrolysis of aqueous solutions of sodium chloride having high performance and durability with decreased amount of the precious metal(s) in the intermediate layer to decrease manufacturing cost and to ease problem of the resources. The oxygen evolution anode comprises an electroconductive substrate, an intermediate layer and an electrocatalyst. The intermediate layer prepared by calcination consists of multiple oxide of the platinum group element(s), Sn and Sb, with the Sn/Sb ratio of 1-40 and with the sum of Sn and Sb of 90 cationic % or less. The electrocatalyst is prepared by anodic deposition and consists of 0.1-3 cationic % of Sn, 0.2-20 cationic % of Mo and/or W and the balance of Mn.
    Type: Application
    Filed: October 25, 2007
    Publication date: May 22, 2008
    Applicants: Daiki Ataka Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Publication number: 20080116065
    Abstract: Disclosed is an oxygen evolution electrode for formation of only oxygen without formation of chlorine at anode in the performance and the durability of the anode is so high that they are, even in strong acid, at the same level as that in neutral solution. The electrode is prepared by anodic deposition of multiple oxide consisting of Mn—Mo—Sn, Mo—W—Sn or Mn—Mo—W—Sn on an IrO2-coated titanium substrate. The multiple oxide are composed of Mn as the main component, 0.1-3 cationic % of Sn and 0.2-20 cationic % of Mo and/or W.
    Type: Application
    Filed: October 25, 2007
    Publication date: May 22, 2008
    Applicants: Daiki Ataka Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Patent number: 6056862
    Abstract: Disclosed is a process for supplying nickel ions for a nickel alloy electroplating bath so as to replenish nickel ions consumed as electroplating progresses. The process uses an electrolysis cell, which is equipped with a rotatable cathode in the form of a drum or a disk having a surface of titanium or hard chromium plating; and an anode made of a titanium basket in which sulfur-containing metallic nickel is contained. Spent electroplating solution is electrolyzed in the electrolysis cell to dissolve nickel in the anode basket into the solution as ions and deposit a part of the dissolved nickel on the cathode, which is removed therefrom as the cathode rotates, while the rest of the dissolved nickel remains in the solution. The solution thus replenished with nickel ions is reused for the electroplating. The process may also be used to provide cobalt ions to replenish a spent cobalt alloy electroplating solution.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: May 2, 2000
    Assignee: Daiki Engineering Co., Ltd.
    Inventor: Naokazu Kumagai
  • Patent number: 5593556
    Abstract: The present invention provides highly durable electrodes for electrolysis, which are platinum group metal oxide-coated or composite oxide-coated Ti electrodes, comprising a sputtered film of a metal or an alloy consisting of at least one selected from the group of Ti, Zr, Nb and Ta to be transformed the metastable .beta. phase to the .alpha. phase in crystal structure by the heat treatment to prepare the active layer carried on the surface, as an intermediate layer at the interface between Ti substrate and electrocatalytic active layer, and method for preparation thereof. The electrodes allow stable electrolysis at low electrode potentials for long periods of time as highly durable electrodes for electrolysis, especially electrodes for oxygen evolution at high current density.
    Type: Grant
    Filed: February 6, 1995
    Date of Patent: January 14, 1997
    Assignee: Daiki Engineering Co., Ltd.
    Inventors: Naokazu Kumagai, Shuji Jikihara, Yoshimitsu Samata
  • Patent number: 4964967
    Abstract: Surface activated surface alloy electrodes and a process for preparing them high in corrosion resistance and activity, comprising a corrosion-resistant metal selected from, or a corrosion-resistant alloy composed of two or more metals selected from titanium, zirconium, niobium and tantalum, or a corrosion-resistant metal selected from, or a corrosion-resistant alloy composed of two or more metals selected from titanium, zirconium, niobium and tantalum clad with a corrosion-resistant metal selected from, or a corrosion-resistant alloy composed of two or more metals selected from titanium, zirconium, niobium and tantalum, or with any other metal or alloy, rolled or non-rolled, being used as a substrate metal or alloy; an alloy consisting of 20 to 67 atomic % of one or more metals selected from titanium, zirconium, niobium and tantalum, 0.
    Type: Grant
    Filed: February 16, 1990
    Date of Patent: October 23, 1990
    Assignees: Daiki Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Naokazu Kumagai, Katsuhiko Asami, Asahi Kawashima
  • Patent number: 4772773
    Abstract: Methods for preparation of overlaid uniform amorphous alloy layers of prescribed compositions and thicknesses bonded tightly to the substrate metals are described. The methods involve previously coating the substrate metal surface with metal layers and irradiating with high energy density beams to cause a melting of the metal layer or layers including, if necessary, a portion of the substrate metal and thereby forming a uniform alloy metal of prescribed composition tightly bonded to the substrate metal surface, said irradiation being carried out during movement of the substrate or beams so as to control irradiation time and depth.
    Type: Grant
    Filed: February 18, 1986
    Date of Patent: September 20, 1988
    Assignees: Daiki Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Naokazu Kumagai, Katsuhiko Asami
  • Patent number: 4770949
    Abstract: Electrode materials and method for their surface activation are described. Alloys consisting of at least one element of the group consisting of Nb, Ta, Ti and Zr, at least one element of the group consisting of Ru, Rh, Pd, Ir and Pt, and balance being Ni are prepared by methods for preparation of amorphous alloys, and are amorphous or supersaturated solid solution. Their surfaces are activated to enhance electrocatalytic activity by enrichment of electrocatalytically active platinum group elements in the surface region in addition to surface roughening as a result of selective dissolution of Ni, Nb, Ta, Ti and Zr from the alloys during immersion in corrosive solutions. The surface-activated amorphous and supersaturated solid solution alloys possess high electrocatalytic activity and selectivity for a specific reaction as well as high corrosion resistance.
    Type: Grant
    Filed: August 4, 1986
    Date of Patent: September 13, 1988
    Assignees: Daiki Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Naokazu Kumagai, Katsuhiko Asami, Asahi Kawashima