Patents by Inventor Naoki Hosogi

Naoki Hosogi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11222764
    Abstract: A charged particle beam device includes: a charged particle source; an optical system which acts on a charged particle beam emitted from the charged particle source; a control unit which controls the optical system; and a storage unit which stores previous setting values of the optical system. The optical system includes a first optical element and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element. The control unit obtains an initial value of a setting value of the second optical element based on previous setting values of the second optical element; and changes a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtains the setting value of the second optical element based on the change in the state of the charged particle beam.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: January 11, 2022
    Assignee: JEOL Ltd.
    Inventors: Kazuya Yamazaki, Yuko Shimizu, Hirofumi Iijima, Takuma Fukumura, Naoki Hosogi, Tomohiro Nakamichi
  • Publication number: 20200343072
    Abstract: A charged particle beam device includes: a charged particle source; an optical system which acts on a charged particle beam emitted from the charged particle source; a control unit which controls the optical system; and a storage unit which stores previous setting values of the optical system. The optical system includes a first optical element and a second optical element for controlling a state of the charged particle beam to be incident on the first optical element. The control unit obtains an initial value of a setting value of the second optical element based on previous setting values of the second optical element; and changes a state of the charged particle beam by changing the setting value of the second optical element from the obtained initial value and obtains the setting value of the second optical element based on the change in the state of the charged particle beam.
    Type: Application
    Filed: March 23, 2020
    Publication date: October 29, 2020
    Inventors: Kazuya Yamazaki, Yuko Shimizu, Hirofumi Iijima, Takuma Fukumura, Naoki Hosogi, Tomohiro Nakamichi
  • Patent number: 10741358
    Abstract: An electron microscope comprises: an electron microscope main body including a phase plate that imparts a phase change to an electron wave, a moving mechanism that moves the phase plate, and a detector that acquires an image formed by an electron beam transmitted through a sample; and a control unit that controls the electron microscope main body. The control unit performs a phase plate image acquisition process of acquiring a phase plate image which is an image of the phase plate; an unevenness determination process of determining whether or not the phase plate has unevenness based on the phase plate image; and a moving mechanism control process of moving the phase plate by controlling the moving mechanism when the control unit has determined that the unevenness is present.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 11, 2020
    Assignee: JEOL Ltd.
    Inventors: Yuko Shimizu, Hirofumi Iijima, Naoki Hosogi, Jun Yamashita
  • Patent number: 10541107
    Abstract: A three-dimensional image reconstruction method associated with the present invention includes the steps of: obtaining a first transmission electron microscope image of a sample containing the membrane proteins present within a lipid membrane, the image having been taken by illuminating an electron beam on the sample from a direction tilted relative to a line normal to the membrane surface of the lipid membrane; obtaining a second transmission electron microscope image of the sample taken by illuminating the electron beam on the sample perpendicularly to the membrane surface of the lipid membrane; identifying orientations of the membrane proteins of the first transmission electron microscope image on a basis of the second transmission electron microscope image; and analyzing a three-dimensional structure of the membrane proteins from the first transmission electron microscope image on a basis of information about the identified orientations of the membrane proteins.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 21, 2020
    Assignees: National University Corporation Nagoya University, JEOL Ltd.
    Inventors: Yoshinori Fujiyoshi, Isamu Ishikawa, Naoki Hosogi
  • Publication number: 20200013582
    Abstract: An electron microscope comprises: an electron microscope main body including a phase plate that imparts a phase change to an electron wave, a moving mechanism that moves the phase plate, and a detector that acquires an image formed by an electron beam transmitted through a sample; and a control unit that controls the electron microscope main body. The control unit performs a phase plate image acquisition process of acquiring a phase plate image which is an image of the phase plate; an unevenness determination process of determining whether or not the phase plate has unevenness based on the phase plate image; and a moving mechanism control process of moving the phase plate by controlling the moving mechanism when the control unit has determined that the unevenness is present.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 9, 2020
    Inventors: Yuko Shimizu, Hirofumi Iijima, Naoki Hosogi, Jun Yamashita
  • Patent number: 10014156
    Abstract: There is provided a method capable of calibrating a sample stage easily. This method is for use in a charged particle beam system having the sample stage for moving a sample and an imaging subsystem for capturing a charged particle beam image and obtaining a final image. The method includes the steps of obtaining the final image from the imaging subsystem (step S100), obtaining correlation information that associates a given position in the final image with a position of the sample stage assumed when the final image was taken (step S102), obtaining length information about a length per pixel of the final image at a final magnification (step S106), and finding a correction between coordinates of the final image and coordinates of the sample stage on the basis of the correlation information and of the length information (step S110).
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 3, 2018
    Assignee: JEOL Ltd.
    Inventor: Naoki Hosogi
  • Publication number: 20170278669
    Abstract: A three-dimensional image reconstruction method associated with the present invention comprises the steps of: obtaining a first transmission electron microscope image of a sample containing the membrane proteins present within a lipid membrane, the image having been taken by illuminating an electron beam on the sample from a direction tilted relative to a line normal to the membrane surface of the lipid membrane (step S10); obtaining a second transmission electron microscope image of the sample taken by illuminating the electron beam on the sample perpendicularly to the membrane surface of the lipid membrane (step S12); identifying orientations of the membrane proteins of the first transmission electron microscope image on a basis of the second transmission electron microscope image (step S14); and analyzing a three-dimensional structure of the membrane proteins from the first transmission electron microscope image on a basis of information about the identified orientations of the membrane proteins (step S18)
    Type: Application
    Filed: August 21, 2015
    Publication date: September 28, 2017
    Inventors: Yoshinori Fujiyoshi, Isamu Ishikawa, Naoki Hosogi
  • Publication number: 20170117116
    Abstract: There is provided a method capable of calibrating a sample stage easily. This method is for use in a charged particle beam system having the sample stage for moving a sample and an imaging subsystem for capturing a charged particle beam image and obtaining a final image. The method includes the steps of obtaining the final image from the imaging subsystem (step S100), obtaining correlation information that associates a given position in the final image with a position of the sample stage assumed when the final image was taken (step S102), obtaining length information about a length per pixel of the final image at a final magnification (step S106), and finding a correction between coordinates of the final image and coordinates of the sample stage on the basis of the correlation information and of the length information (step S110).
    Type: Application
    Filed: October 21, 2016
    Publication date: April 27, 2017
    Inventor: Naoki Hosogi