Patents by Inventor Naoki Sakatsume

Naoki Sakatsume has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8754642
    Abstract: A magnetic balance type current sensor includes a magnetoresistance effect element whose resistance value changes owing to the application of an induction magnetic field from a current to be measured; a feedback coil disposed in the vicinity of the magnetoresistance effect element and generating a cancelling magnetic field cancelling out the induction magnetic field; a magnetic field detection bridge circuit including two outputs causing a voltage difference corresponding to the induction magnetic field to occur; and a magnetic shield attenuating the induction magnetic field and enhancing the cancelling magnetic field, wherein, on the basis of the current flowing through the feedback coil at the time of an equilibrium state in which the induction magnetic field and the cancelling magnetic field are cancelled out, the current to be measured is measured, wherein the feedback coil, the magnetic shield, and the magnetic field detection bridge circuit are formed on a same substrate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 17, 2014
    Assignee: Alps Green Devices., Ltd.
    Inventors: Yosuke Ide, Masahiro Iizuka, Masamichi Saito, Akira Takahashi, Hideharu Matsuo, Tsuyoshi Nojima, Shigenobu Miyajima, Naoki Sakatsume, Kenji Ichinohe, Yoshihiro Nishiyama, Tatsuya Kogure, Hidekazu Kobayashi
  • Patent number: 8519704
    Abstract: A magnetic-balance-system current sensor includes: a magnetoresistive element, a resistance value of the magnetoresistive element being changed by applying an induction magnetic field generated by a measurement target current; magnetic cores disposed near the magnetoresistive element; a feedback coil disposed near the magnetoresistive element and configured to generate a cancelling magnetic field that cancels out the induction magnetic field; and a magnetic-field detecting bridge circuit having two outputs. The measurement target current is measured on the basis of a current flowing through the feedback coil when the induction magnetic field and the induction magnetic field and the cancelling magnetic field cancel each other out. The feedback coil, the magnetic cores, and the magnetic-field detecting bridge circuit are formed on a same substrate. The feedback coil is of a spiral type, and the magnetic cores are provided above and below the feedback coil.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Yosuke Ide, Masamichi Saito, Akira Takahashi, Tsuyoshi Nojima, Shigenobu Miyajima, Naoki Sakatsume, Kenji Ichinohe, Yoshihiro Nishiyama, Tatsuya Kogure, Hidekazu Kobayashi, Masahiro Iizuka
  • Patent number: 8437107
    Abstract: A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; and first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view, wherein a distance between the magnetoresistive element and the second shield film is set to 8 to 100 ?m.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 7, 2013
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Yosuke Ide, Masamichi Saito, Akira Takahashi, Tsuyoshi Nojima, Yoshihiro Nishiyama, Hidekazu Kobayashi, Kenji Ichinohe, Naoki Sakatsume
  • Patent number: 8269492
    Abstract: A magnetic balance type current sensor measures a measured current which flows in a feedback coil when electrical conduction is provided by a voltage difference according to an induction magnetic field from the measured current and an equilibrium state is reached in which the induction magnetic field and a cancel magnetic field cancel each other. Sensor elements in a pair are arranged at positions with magnetic field from the measured current. The magnetization direction of the pinned magnetic layer in the magnetoresistive effect element of one sensor element is aligned in a forward direction with respect to the magnetic field formed by the measured current. The magnetization direction of the pinned magnetic layer in the magnetoresistive effect element of the other sensor element is aligned in a reverse direction with respect to the magnetic field formed by the measured current.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: September 18, 2012
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Masamichi Saito, Akira Takahashi, Masahiro Iizuka, Tatsuya Kogure, Yosuke Ide, Yoshihiro Nishiyama, Kenji Ichinohe, Naoki Sakatsume, Tsuyoshi Nojima, Shigenobu Miyajima, Hidekazu Kobayashi
  • Patent number: 8222769
    Abstract: A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view; and a third shield film disposed to surround the magnetoresistive element.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: July 17, 2012
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Yosuke Ide, Masamichi Saito, Akira Takahashi, Tsuyoshi Nojima, Yoshihiro Nishiyama, Hidekazu Kobayashi, Kenji Ichinohe, Naoki Sakatsume
  • Publication number: 20120062224
    Abstract: A magnetic balance type current sensor includes a magnetoresistance effect element whose resistance value changes owing to the application of an induction magnetic field from a current to be measured; a feedback coil disposed in the vicinity of the magnetoresistance effect element and generating a cancelling magnetic field cancelling out the induction magnetic field; a magnetic field detection bridge circuit including two outputs causing a voltage difference corresponding to the induction magnetic field to occur; and a magnetic shield attenuating the induction magnetic field and enhancing the cancelling magnetic field, wherein, on the basis of the current flowing through the feedback coil at the time of an equilibrium state in which the induction magnetic field and the cancelling magnetic field are cancelled out, the current to be measured is measured, wherein the feedback coil, the magnetic shield, and the magnetic field detection bridge circuit are formed on a same substrate.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Yosuke IDE, Masahiro IIZUKA, Masamichi SAITO, Akira TAKAHASHI, Hideharu MATSUO, Tsuyoshi NOJIMA, Shigenobu MIYAJIMA, Naoki SAKATSUME, Kenji ICHINOHE, Yoshihiro NISHIYAMA, Tatsuya KOGURE, Hidekazu KOBAYASHI
  • Publication number: 20120062215
    Abstract: A magnetic-balance-system current sensor includes: a magnetoresistive element, a resistance value of the magnetoresistive element being changed by applying an induction magnetic field generated by a measurement target current; magnetic cores disposed near the magnetoresistive element; a feedback coil disposed near the magnetoresistive element and configured to generate a cancelling magnetic field that cancels out the induction magnetic field; and a magnetic-field detecting bridge circuit having two outputs. The measurement target current is measured on the basis of a current flowing through the feedback coil when the induction magnetic field and the induction magnetic field and the cancelling magnetic field cancel each other out. The feedback coil, the magnetic cores, and the magnetic-field detecting bridge circuit are formed on a same substrate. The feedback coil is of a spiral type, and the magnetic cores are provided above and below the feedback coil.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Yosuke IDE, Masamichi SAITO, Akira TAKAHASHI, Tsuyoshi NOJIMA, Shigenobu MIYAJIMA, Naoki SAKATSUME, Kenji ICHINOHE, Yoshihiro NISHIYAMA, Tatsuya KOGURE, Hidekazu KOBAYASHI, Masahiro IIZUKA
  • Publication number: 20110080165
    Abstract: A magnetic balance type current sensor measures a measured current which flows in a feedback coil when electrical conduction is provided by a voltage difference according to an induction magnetic field from the measured current and an equilibrium state is reached in which the induction magnetic field and a cancel magnetic field cancel each other. Sensor elements in a pair are arranged at positions with magnetic field from the measured current. The magnetization direction of the pinned magnetic layer in the magnetoresistive effect element of one sensor element is aligned in a forward direction with respect to the magnetic field formed by the measured current. The magnetization direction of the pinned magnetic layer in the magnetoresistive effect element of the other sensor element is aligned in a reverse direction with respect to the magnetic field formed by the measured current.
    Type: Application
    Filed: September 27, 2010
    Publication date: April 7, 2011
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Masamichi SAITO, Akira TAKAHASHI, Masahiro IIZUKA, Tatsuya KOGURE, Yosuke IDE, Yoshihiro NISHIYAMA, Kenji ICHINOHE, Naoki SAKATSUME, Tsuyoshi NOJIMA, Shigenobu MIYAJIMA, Hidekazu KOBAYASHI
  • Publication number: 20100270865
    Abstract: A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; and first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view, wherein a distance between the magnetoresistive element and the second shield film is set to 8 to 100 ?m.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 28, 2010
    Applicant: ALPS ELECTRIC CO., LTD.
    Inventors: Yosuke IDE, Masamichi SAITO, Akira TAKAHASHI, Tsuyoshi NOJIMA, Yoshihiro NISHIYAMA, Hidekazu KOBAYASHI, Kenji ICHINOHE, Naoki SAKATSUME
  • Publication number: 20100270866
    Abstract: A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view; and a third shield film disposed to surround the magnetoresistive element.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 28, 2010
    Applicant: ALPS ELECTRIC CO., LTD.
    Inventors: Yosuke IDE, Masamichi SAITO, Akira TAKAHASHI, Tsuyoshi NOJIMA, Yoshihiro NISHIYAMA, Hidekazu KOBAYASHI, Kenji ICHINOHE, Naoki SAKATSUME
  • Patent number: 6751071
    Abstract: An upper shield layer includes a Ni—Fe alloy underlying film formed by sputtering deposition, and a Ni—Fe alloy plating film formed on the underlying film by electroplating. The Fe composition ratio distribution of the upper shield layer in the thickness direction ranges from 17 to 19% by weight.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: June 15, 2004
    Assignee: Alps Electric Company Co., Ltd.
    Inventors: Hisayuki Yazawa, Naoki Sakatsume, Yoshihiro Kanada
  • Publication number: 20010010615
    Abstract: An upper shield layer includes a Ni—Fe alloy underlying film formed by sputtering deposition, and a Ni—Fe alloy plating film formed on the underlying film by electroplating. The Fe composition ratio distribution of the upper shield layer in the thickness direction ranges from 17 to 19% by weight.
    Type: Application
    Filed: January 16, 2001
    Publication date: August 2, 2001
    Applicant: Alps Electric Co., Ltd.
    Inventors: Hisayuki Yazawa, Naoki Sakatsume, Yoshihiro Kanada