Patents by Inventor Naoki Shutoh

Naoki Shutoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8637758
    Abstract: Disclosed is a thermoelectric material which is represented by the following composition formula (1) or (2) and comprises as a major phase an MgAgAs type crystal structure: (Tia1Zrb1Hfc1)xNiySn100-x-y??composition formula (1); (Lnd(Tia2Zrb2Hfc2)1-d)xNiySn100-x-y??composition formula (2); (wherein a1, b1, c1, x and y satisfy the conditions of: 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35 and 30?y?35, and Ln is at least one element selected from the group consisting of Y and rare earth elements, and a2, b2, c2 and d satisfy the conditions of: 0?a2?1, 0?b2?1, 0?c2?1, a2+b2+c2=1 and 0<d?0.3).
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Shinya Sakurada, Naruhito Kondo, Nobuhisa Takezawa
  • Publication number: 20120037199
    Abstract: Disclosed is a thermoelectric material which is represented by the following composition formula (1) or (2) and comprises as a major phase an MgAgAs type crystal structure: (Tia1Zrb1Hfc1)xNiySn100-x-y??composition formula (1); (Lnd(Tia2Zrb2Hfc2)1-d)xNiySn100-x-y??composition formula (2); (wherein a1, b1, c1, x and y satisfy the conditions of: 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35 and 30?y?35, and Ln is at least one element selected from the group consisting of Y and rare earth elements, and a2, b2, c2 and d satisfy the conditions of: 0?a2?1, 0?b2?1, 0?c2?1, a2+b2+c2=1 and 0<d?0.3).
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Inventors: Naoki SHUTOH, Shinya SAKURADA, Naruhito KONDO, Nobuhisa TAKEZAWA
  • Patent number: 8067686
    Abstract: Disclosed is a thermoelectric material which is represented by the following composition formula (1) or (2) and comprises as a major phase an MgAgAs type crystal structure: (Tia1Zrb1Hfc1)xNiySn100-x-y??composition formula (1); (Lnd(Tia2Zrb2Hfc2)1-d)xNiySn100-x-y??composition formula (2); (wherein a1, b1, c1, x and y satisfy the conditions of: 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35 and 30?y?35, and Ln is at least one element selected from the group consisting of Y and rare earth elements, and a2, b2, c2 and d satisfy the conditions of: 0?a2?1, 0?b2?1, 0?c2?1, a2+b2+c2=1 and 0<d?0.3).
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: November 29, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Shinya Sakurada, Naruhito Kondo, Nobuhisa Takezawa
  • Publication number: 20110236302
    Abstract: According to one embodiment, there is provided a catalyst including a first structure including a metal oxide substrate having a pore, and a fine particle including Cu as a main component supported on an inner surface of the substrate facing the pore, and a second structure formed on the outer surface of the first structure and including Cu as a main component. The second structure is formed into a needle with a tip thereof oriented outward from the first structure.
    Type: Application
    Filed: September 23, 2010
    Publication date: September 29, 2011
    Inventors: Yoshio Hanakata, Takayuki Fukasawa, Naoki Shutoh
  • Patent number: 7935883
    Abstract: A thermoelectric material has a composition expressed by (Fe1-pVp)100-x(Al1-qSiq)x (0.35?p?0.7, 0.01?q?0.7, 20?x?30 atomic %). The thermoelectric material includes a crystal phase having an L21 structure or a crystal phase having a B2 structure as a main phase.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 3, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Patent number: 7851692
    Abstract: A thermoelectric material has a composition expressed by (TipHfqZr1-p-q)xCoy(Sb1-rSnr)100-x-y (0.1<p?0.3, 0.1<q?0.3, 0.1<r?0.8, 30?x?35 atomic %, and 30?y?35 atomic %), and includes a phase having an MgAgAs crystal structure as a main phase.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: December 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Patent number: 7745720
    Abstract: A thermoelectric material includes a composition represented by the following formula (A): (Tia1Zrb1Hfc1)xNiySn100-x-y??(A) where 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35, and 30?y?35. The composition includes at least two MgAgAs crystal phases different in a lattice constant, and, assuming that X-ray diffraction peak intensity from a (422) diffraction plane of a first MgAgAs crystal phase having a smallest lattice constant and X-ray diffraction peak intensity from a (422) diffraction plane of a second MgAgAs crystal phase having a largest lattice constant be I1 and I2, respectively, a value of I1/(I1+I2) is in a range of 0.2 to 0.8.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: June 29, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Shinya Sakurada, Naoki Shutoh, Shinsuke Hirono
  • Patent number: 7663054
    Abstract: Disclosed is a thermoelectric material comprising a main phase which is represented by the following composition formula and having an MgAgAs-type crystalline structure: (Ta1Zrb1Hfc1)xCoySb100-x-y wherein 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x ?35, and 30?y?35.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Shinya Sakurada, Naruhito Kondo, Osamu Tsuneoka
  • Publication number: 20080236644
    Abstract: A thermoelectric material has a composition expressed by (Fe1-pVp)100-x(Al1-qSiq)x (0.35?p?0.7, 0.01?q?0.7, 20?x?30 atomic %). The thermoelectric material includes a crystal phase having an L21 structure or a crystal phase having a B2 structure as a main phase.
    Type: Application
    Filed: September 4, 2007
    Publication date: October 2, 2008
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Publication number: 20080066798
    Abstract: A thermoelectric material has a composition expressed by (TipHfqZr1-p-q)xCoy(Sb1-rSnr)100-x-y (0.1<p?0.3, 0.1<q?0.3, 0.1<r?0.8, 30?x?35 atomic %, and 30?y?35 atomic %), and includes a phase having an MgAgAs crystal structure as a main phase.
    Type: Application
    Filed: August 24, 2007
    Publication date: March 20, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Publication number: 20070221264
    Abstract: There is provided a thermoelectric conversion module comprising a first insulated substrate, a plurality of columnar p-type and n-type semiconductor thermoelectric transducers alternately arranged on the first insulated substrate, a second insulated substrate arranged so as to face the first insulation with interposition of the semiconductor thermoelectric transducers, first electrodes arranged between the first insulated substrate and the respective semiconductor thermoelectric transducers, and second electrodes arranged between the second insulated substrate and the respective semiconductor thermoelectric transducers, the first and second electrodes electrically connecting the p-type and n-type semiconductor thermoelectric transducers in series, and a glass film coated on the exposed surface of each first electrode at the first insulated substrate side and on a part of the exposed surfaces of the p-type and n-type semiconductor thermoelectric transducers directed from the first electrode to the second elect
    Type: Application
    Filed: March 19, 2007
    Publication date: September 27, 2007
    Inventors: Naoki SHUTOH, Hiromitsu TAKEDA, Shinya SAKURADA
  • Publication number: 20050217715
    Abstract: A thermoelectric material includes a composition represented by the following formula (A): (Tia1Zrb1Hfc1)xNiySn100-x-y??(A) where 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35, and 30?y?35. The composition includes at least two MgAgAs crystal phases different in a lattice constant, and, assuming that X-ray diffraction peak intensity from a (422) diffraction plane of a first MgAgAs crystal phase having a smallest lattice constant and X-ray diffraction peak intensity from a (422) diffraction plane of a second MgAgAs crystal phase having a largest lattice constant be I1 and I2, respectively, a value of I1/(I1+I2) is in a range of 0.2 to 0.8.
    Type: Application
    Filed: March 24, 2005
    Publication date: October 6, 2005
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Shinya Sakurada, Naoki Shutoh, Shinsuke Hirono
  • Publication number: 20050172994
    Abstract: Disclosed is a thermoelectric material which is represented by the following composition formula (1) or (2) and comprises as a major phase an MgAgAs type crystal structure: (Tia1Zrb1Hfc1)xNiySn100-x-y??composition formula (1); (Lnd(Tia2Zrb2Hfc2)1-d)xNiySn100-x-y??composition formula (2); (wherein a1, b1, c1, x and y satisfy the conditions of: 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30?x?35 and 30?y?35, and Ln is at least one element selected from the group consisting of Y and rare earth elements, and a2, b2, c2 and d satisfy the conditions of: 0?a2?1, 0?b2?1, 0?c2?1, a2+b2+c2=1 and 0<d?0.3).
    Type: Application
    Filed: July 30, 2003
    Publication date: August 11, 2005
    Inventors: Naoki Shutoh, Shinya Sakurada, Naruhito Kondo, Nobuhisa Takezawa
  • Publication number: 20050139251
    Abstract: Disclosed is a thermoelectric material comprising a main phase which is represented by the following composition formula and having an MgAgAs-type crystalline structure: (Ta1Zrb1Hfc1)xCoySb100-x-y wherein 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1, 30<X<35, and 30?y?35.
    Type: Application
    Filed: October 6, 2004
    Publication date: June 30, 2005
    Inventors: Naoki Shutoh, Shinya Sakurada, Naruhito Kondo, Osamu Tsuneoka
  • Publication number: 20040261831
    Abstract: An on-board generation system of a vehicle includes an on-board combustor mounted to a vehicle independently from an engine thereof, a high-temperature system line for circulating a thermal medium for receiving heat caused through a combustion process in the combustor, a low-temperature system line for circulating a medium on a low-temperature side which is subjected to heat exchanging with the thermal medium, and an electric generator, arranged between the high-temperature system line and the low-temperature system line, for recovering the thermal energy of the thermal medium as electric energy, in which the electric power generated by the electric generator is supplied to a power source including either one of an on-board battery and a power supply element for driving a vehicle equipment.
    Type: Application
    Filed: April 19, 2004
    Publication date: December 30, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Osamu Tsuneoka, Naruhito Kondo, Akihiro Hara, Naoki Shutoh, Shinya Sakurada
  • Patent number: 6759586
    Abstract: Disclosed is a thermoelectric module, comprising a plurality of p-type thermoelectric elements each comprising a p-type semiconductor having a skutterdite crystal structure, a plurality of n-type thermoelectric elements each comprising a n-type semiconductor having a skutterdite crystal structure, at least one first electrode, at least one second electrode, at least one first alloy layer and at least one second alloy layer, wherein said at least one first alloy layer and said at least one second alloy layer contain Sb and at least one transition metal element selected from the group consisting of Ag, Au and Cu.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: July 6, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Hiromitsu Takeda, Naruhito Kondo
  • Publication number: 20020179135
    Abstract: Disclosed is a thermoelectric module, comprising a plurality of p-type thermoelectric elements each comprising a p-type semiconductor having a skutterdite crystal structure, a plurality of n-type thermoelectric elements each comprising a n-type semiconductor having a skutterdite crystal structure, at least one first electrode, at least one second electrode, at least one first alloy layer and at least one second alloy layer, wherein said at least one first alloy layer and said at least one second alloy layer contain Sb and at least one transition metal element selected from the group consisting of Ag, Au and Cu.
    Type: Application
    Filed: March 26, 2002
    Publication date: December 5, 2002
    Inventors: Naoki Shutoh, Hiromitsu Takeda, Naruhito Kondo
  • Patent number: 5629666
    Abstract: Disclosed is a power resistor which has a large heat capacity per unit volume and an appropriate and stable electrical resistance, and in which the resistance changes little with time due to surge absorption. This power resistor includes a sintered body containing aluminum oxide and carbon, and a pair of electrodes formed on the two opposing surfaces of the sintered body. This sintered body consists of first regions containing a small amount of carbon or not containing carbon and second regions containing a larger amount of carbon than in the first regions and so arranged as to be connected to the electrodes.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: May 13, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motomasa Imai, Naoki Shutoh, Fumio Ueno
  • Patent number: 5509558
    Abstract: A metal oxide resistor for suppressing variations in resistivity in use in an atmosphere at a high temperature or humidity. Such a metal oxide resistor includes a sintered body in which carbon particles having an average grain size of 1 .mu.m or less exist in the grain boundaries of metal oxide particles in an amount of 0.05 to 3 wt %, and electrodes formed on at least two opposing surfaces of the sintered body.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: April 23, 1996
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Tungaloy Co., Ltd.
    Inventors: Motomasa Imai, Naoki Shutoh, Katsuyoshi Oh-Ishi, Fumio Ueno, Hideo Ohkuma, Yuji Katsumura, Masaki Kobayashi, Toshiyuki Takahashi
  • Patent number: 5373129
    Abstract: A compact power circuit breaker having a large breaking capacity and stable breaking performance by using a compact closing resistor unit having high performance. The power circuit breaker includes a main switch arranged in a current path, an auxiliary switch connected to the current path parallel with respect to the main switch and turned on prior to an ON state of the main switch, and a closing resistor unit connected in series with the auxiliary switch and incorporated with a resistor having a sintered body consisting of a Zn--Ti--Co--O--based oxide and having metal components consisting of titanium calculated as titanium oxide (TiO.sub.2) in an amount of 0.5 to 25 mol %, cobalt calculated as cobalt oxide (CoO) in an amount of 0.5 to 30 mol %, and Zn as substantially the balance.
    Type: Grant
    Filed: March 9, 1993
    Date of Patent: December 13, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Motomasa Imai, Fumio Ueno