Patents by Inventor Naoki TERAO

Naoki TERAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11988691
    Abstract: The current measurement device (1, 2) includes a first sensor (SE1) configured to detect a direct current magnetic field and a low-frequency alternating current magnetic field generated due to the current (1) flowing through the conductor (MC) to be measured, a second sensor (SE2) configured to detect alternating current magnetic fields from a low frequency to a high frequency generated due to the current (I) flowing through the conductor to be measured, a first calculator (21, 21A) configured to calculate the current flowing through the conductor to be measured from a detection result of the first sensor using distance information indicating a distance (r) between the first sensor (SE1) and the conductor (MC) to be measured, a second calculator (22) configured to calculate the current flowing through the conductor to be measured from a detection result of the second sensor, and a synthesizer (23) configured to synthesize a calculation result of the first calculator with a calculation result of the second cal
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: May 21, 2024
    Assignee: Yokogawa Electric Corporation
    Inventors: Kazuma Takenaka, Kotaro Ogawa, Minako Terao, Naoki Noguchi, Saki Kobako, Fumitake Terao, Satoshi Yoshitake
  • Patent number: 11927647
    Abstract: A current measurement device (1 and 2) is for measuring a current (I) flowing through measurement target conductors (MC1 and MC2), and the current measurement device includes: a plurality of triaxial magnetic sensors (11, 12, and 13) disposed so that a magnetic sensing direction and a relative position have a prescribed relationship; a noise remover (25a) configured to remove noise components included in detection results of the plurality of triaxial magnetic sensors; a sign adder (25b) configured to add a sign to the detection results from which the noise components have been removed, based on sign information of each of the detection results of the plurality of triaxial magnetic sensors obtained at a specific point in time; and a current calculator (25c and 25d) configured to calculate a current flowing through the measurement target conductors by using the detection results to which the sign has been added by the sign adder.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: March 12, 2024
    Assignee: Yokogawa Electric Corporation
    Inventors: Kazuma Takenaka, Minako Terao, Kotaro Ogawa, Saki Kobako, Naoki Noguchi
  • Publication number: 20240030933
    Abstract: A delta sigma modulator includes: an integrator that integrates differences between input signals and output signals of the delta sigma modulator; and a clocked comparator that outputs the output signals that are results of comparison between an output of the integrator and a threshold, at a timing synchronized with a clock signal. The integrator includes an operational amplifier, input resistors, feedback capacitors, and compensation inductors.
    Type: Application
    Filed: September 15, 2020
    Publication date: January 25, 2024
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20240007120
    Abstract: A time interleaved ADC includes sub-ADCs that sample an analog input signal at a timing synchronized with a clock signal to convert the analog input signal into a digital output signal, delay circuits that apply a time difference to the analog input signal such that the analog input signal is input to each of the sub-ADCs with a delay of a first delay time in an arrangement order of the sub-ADCs, and delay circuits that apply a time difference to the clock signal such that the clock signal is input to each of the sub-ADCs with a delay of a second delay time in the arrangement order of the sub-ADCs.
    Type: Application
    Filed: November 27, 2020
    Publication date: January 4, 2024
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 11830560
    Abstract: A track-and-hold circuit includes: a transistor, in which a base is connected to a signal input terminal, a power supply voltage is applied to a collector, and an emitter is connected to a first signal output terminal; a transistor in which a base is connected to the signal input terminal, the power supply voltage is applied to a collector, and an emitter is connected to a second signal output terminal; capacitors; a constant current source; and a switch circuit alternately turning the transistors to an ON state in response to differential clock signals.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: November 28, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 11824551
    Abstract: Bias adjusting circuits (1_(2k-1), 1_2k) (where k is an integer equal to or greater than 1 and equal to or less than N, and N is an integer equal to or more than 2) adjust DC bias voltage of at least one of clock signals such that a duty ratio, which is a ratio between a period in which a clock signal is High as to a clock signal and a period in which the clock signal is Low thereasto, becomes (2N?2k+1):(2k?1). Sampling circuits switch between a track mode in which an output signal tracks an input signal, and a hold mode in which a value of the input signal at a timing of switching from the track mode to the hold mode is held and output, in accordance with clock signals output from the bias adjusting circuits (2_1 to 2_2N).
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 21, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 11764800
    Abstract: A switched emitter follower circuit is constituted by a transistor in which a base is connected to a signal input terminal, a power voltage is applied to a collector, and an emitter is connected to a signal output terminal, a capacitor in which one end is connected to the collector of the transistor, and the other end is connected to the emitter of the transistor, and a Gilbert-cell type multiplication circuit in which a positive-phase clock output terminal is connected to the emitter of the transistor, a negative-phase clock output terminal is connected to the base of the transistor, and a multiplication result of a differential clock signal and a differential clock signal input from an outside is output to the positive-phase clock output terminal and the negative-phase clock output terminal.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: September 19, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20230155600
    Abstract: Bias adjusting circuits (1_(2k-1), 1_2k) (where k is an integer equal to or greater than 1 and equal to or less than N, and N is an integer equal to or more than 2) adjust DC bias voltage of at least one of clock signals such that a duty ratio, which is a ratio between a period in which a clock signal is High as to a clock signal and a period in which the clock signal is Low thereasto, becomes (2N-2k+1):(2k-1). Sampling circuits switch between a track mode in which an output signal tracks an input signal, and a hold mode in which a value of the input signal at a timing of switching from the track mode to the hold mode is held and output, in accordance with clock signals output from the bias adjusting circuits (2_1 to 2_2N).
    Type: Application
    Filed: April 7, 2020
    Publication date: May 18, 2023
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20230141476
    Abstract: A switched emitter follower circuit is constituted by a transistor in which a base is connected to a signal input terminal, a power voltage is applied to a collector, and an emitter is connected to a signal output terminal, a capacitor in which one end is connected to the collector of the transistor, and the other end is connected to the emitter of the transistor, and a Gilbert-cell type multiplication circuit in which a positive-phase clock output terminal is connected to the emitter of the transistor, a negative-phase clock output terminal is connected to the base of the transistor, and a multiplication result of a differential clock signal and a differential clock signal input from an outside is output to the positive-phase clock output terminal and the negative-phase clock output terminal.
    Type: Application
    Filed: April 9, 2020
    Publication date: May 11, 2023
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20230048012
    Abstract: A track-and-hold circuit includes: a transistor, in which a base is connected to a signal input terminal, a power supply voltage is applied to a collector, and an emitter is connected to a first signal output terminal; a transistor in which a base is connected to the signal input terminal, the power supply voltage is applied to a collector, and an emitter is connected to a second signal output terminal; capacitors; a constant current source; and a switch circuit alternately turning the transistors to an ON state in response to differential clock signals.
    Type: Application
    Filed: January 28, 2020
    Publication date: February 16, 2023
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20220294671
    Abstract: A sampling circuit includes: a first transmission line that transmits an input signal; a second transmission line that transmits a clock signal; and a plurality of sample-hold circuits that are connected to the first and second transmission lines at a constant line distance, wherein the first transmission line transmits the input signal at a first propagation time for each of the line distances, and the second transmission line transmits the clock signal at a second propagation time that is a sum of a preset sampling interval and the first propagation time for each of the line distances.
    Type: Application
    Filed: August 5, 2019
    Publication date: September 15, 2022
    Inventors: Naoki Terao, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 10088858
    Abstract: A power supply apparatus supplies a power supply voltage VDD. The power supply apparatus includes a compensation circuit in addition to a main power supply. The compensation circuit receives, via its input, as a feedback signal, a detection signal VS that corresponds to the power supply voltage VDD. The compensation circuit has input/output characteristics fIO that correspond to the characteristics of the main power supply and the characteristics of a target power supply to be emulated. The compensation circuit injects or otherwise draws a compensation current iCOMP that corresponds to the detection signal VS to or otherwise from a node for generating the power supply voltage VDD.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: October 2, 2018
    Assignees: ADVANTEST CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Masahiro Ishida, Takashi Kusaka, Rimon Ikeno, Kunihiro Asada, Toru Nakura, Naoki Terao
  • Publication number: 20170220060
    Abstract: A power supply apparatus supplies a power supply voltage VDD. The power supply apparatus includes a compensation circuit in addition to a main power supply. The compensation circuit receives, via its input, as a feedback signal, a detection signal VS that corresponds to the power supply voltage VDD. The compensation circuit has input/output characteristics fIO that correspond to the characteristics of the main power supply and the characteristics of a target power supply to be emulated. The compensation circuit injects or otherwise draws a compensation current iCOMP that corresponds to the detection signal VS to or otherwise from a node for generating the power supply voltage VDD.
    Type: Application
    Filed: January 23, 2017
    Publication date: August 3, 2017
    Inventors: Masahiro ISHIDA, Takashi KUSAKA, Rimon IKENO, Kunihiro ASADA, Toru NAKURA, Naoki TERAO