Patents by Inventor Naoki Yoshinaga

Naoki Yoshinaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140178712
    Abstract: Hot rolled steel sheet which has a maximum tensile strength of 600 MPa or more and has an excellent low temperature impact energy absorption and HAZ softening resistance and a method of production of the same are provided, that is, sheet which contains, by mass %, C: 0.04 to 0.09%, Si: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0% or less, Nb: 0.02 to 0.09%, Ti: 0.02 to 0.07%, and N: 0.005% or less, where 2.0?Mn+8[% Ti]+12[% Nb]?2.6, has a balance of Fe and unavoidable impurities, has an area percentage of pearlite of 5% or less, has a total area percentage of martensite and retained austenite of 0.5% or less, has a balance of a metal structure of ferrite and/or bainite, has an average grain size of ferrite and bainite of 10 ?m or less, has an average particle size of alloy carbonitrides with incoherent interfaces which contain Ti and Nb of 20 nm or less, and has a yield ratio of 0.85 or more.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 26, 2014
    Inventors: Naoki Maruyama, Naoki Yoshinaga, Masafumi Azuma, Yasuharu Sakuma, Atsushi Itami
  • Patent number: 8747577
    Abstract: High yield ratio high-strength hot rolled thin steel sheet superior in weldability and ductility comprising, by mass %, C: over 0.030 to less than 0.10%, Si: 0.30 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: 0.060% or less, N: 0.0001 to 0.0070%, containing further Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, and simultaneously satisfying 1.1?14×Ti(%)+20×Nb(%)+3×Mo(%)+300×B(%)?3.7, the balance comprised of iron and unavoidable impurities, and having a yield ratio of 0.64 to less than 0.92, a TS×El1/2 of 3320 or more, an YR×TS×El1/2 of 2320 or more, and a maximum tensile strength (TS) of 780 MPa or more.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Naoki Yoshinaga, Shunji Hiwatashi, Yasuharu Sakuma, Atsushi Itami
  • Publication number: 20140149332
    Abstract: A remaining power acquisition unit (12) of an action suggestion device (1) acquires an amount of power remaining in a battery cell (2). A forecast information acquisition unit (11) acquires, over the Internet, forecast information including at least one of the weather forecast in a region where a power generator that supplies power to the battery cell (2) is located and schedule information on planned blackouts. A suggestion information generator (14) extracts an action satisfying a predetermined evaluation criterion which is based on the forecast information and the amount of remaining power from an action list indicating possible actions to be taken by a user and stored in an action list storage (13), and generates suggestion information showing the extracted action. The suggestion information generator (14) makes a display (15) display the suggestion information.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 29, 2014
    Applicant: NEC CORPORATION
    Inventors: Rie Tanaka, Shinichi Doi, Taku Konishi, Satoko Itaya, Naoki Yoshinaga
  • Publication number: 20140134582
    Abstract: An activity information obtainer (11) obtains activity information indicating an activity of a user detected by an activity detector (21), and stores it in an activity information memory (12). A parameter selector (13) selects a parameter value within a predetermined range for each of multiple activity parameters indicating barometers of activities of the user from the activity information stored in the activity information memory (12), and selects a specific activity parameter based on the distribution of the selected parameter values and a predetermined selection condition. A position calculator (14) calculates a position of a target user relative to other users with respect to the specific activity parameter selected by the parameter selector (13). A presentation information generator (15) generates presentation information indicating the position of the target user, and transmits it to an outputter (22). The outputter (22) outputs the presentation information.
    Type: Application
    Filed: July 11, 2012
    Publication date: May 15, 2014
    Inventors: Taku Konishi, Shinichi Doi, Satoko Itaya, Rie Tanaka, Naoki Yoshinaga
  • Publication number: 20140054872
    Abstract: A structure (10) for a front section of a vehicle body in a vehicle body (1) comprising a front chamber (3) disposed on the forward side of a vehicle interior (2) is provided with the following: a pair of front side members (11), located within the front chamber, that extend in the longitudinal direction of the vehicle body; a pair of strut towers (16) disposed on either side in the width direction of the front chamber and within which front wheel suspensions are disposed; and reinforcement members (20) that link the top of each strut tower with the front side members that face the strut towers, and that extend between the strut towers and the front side members. This configuration allows a structure for a front section of a vehicle body to be provided that can efficiently improve the rigidity of the vehicle body of an automobile against torsion and against lateral bending, and that can efficiently reduce the weight of the vehicle body by means of thickness reduction using a high-strength steel plate.
    Type: Application
    Filed: March 8, 2012
    Publication date: February 27, 2014
    Inventors: Toshiyuki Niwa, Masayoshi Suehiro, Atsushi Seto, Takeshi Kawachi, Masaaki Mizumura, Seiichi Daimaru, Kaoru Kawasaki, Hatsuhiko Oikawa, Yasunobu Miyazaki, Tatsuya Sakiyama, Nobutaka Shimizu, Naoki Yoshinaga
  • Patent number: 8657970
    Abstract: This hot-rolled steel sheet contains, in terms of mass %, C: 0.015% or more to less than 0.040%; Si: less than 0.05%; Mn: 0.9% or more to 1.8% or less; P: less than 0.02%; S: less than 0.01%; Al: less than 0.1%; N: less than 0.006%; and Ti: 0.05% or more to less than 0.11%, with the remainder being Fe and inevitable impurities, wherein Ti/C is in a range of 2.5 or more to less than 3.5, Nb, Zr, V, Cr, Mo, B and W are not included, a microstructure includes a mixed microstructure of polygonal ferrite and quasi-polygonal ferrite in a proportion of greater than 96%, a maximum tensile strength is 520 MPa or more and less than 720 MPa, an aging index AI is more than 15 MPa, a product of a hole expansion ratio (?) % and a total elongation (El) % is 2350 or more, and a fatigue limit is 200 MPa or more.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: February 25, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Naoki Yoshinaga, Masafumi Azuma, Yasuharu Sakuma, Naoki Maruyama
  • Publication number: 20130275514
    Abstract: A behavior information acquirer (11) acquires behavior information representing the behavior of a user detected by a behavior detector (21), and stores the behavior information in a behavior information memory (12). How the influence of the behavior of the user indicated by the behavior information acquired by the behavior information acquirer (11) will spread over a network of mutual information is calculated from mutual information, user information, and a behavior list respectively stored in a mutual information memory (13), a user information memory (14), and a behavior information memory (12). A presentation information generator (16) generates presentation information depicting the way in which the influence of the behavior of the user indicated by the behavior information acquired by the behavior information acquirer (11) propagates to other users, and transmits the presentation information to a terminal device (2B).
    Type: Application
    Filed: December 13, 2011
    Publication date: October 17, 2013
    Applicant: NEC CORPORATION
    Inventors: Rie Tanaka, Shinichi Doi, Satoko Itaya, Taku Konishi, Naoki Yoshinaga
  • Publication number: 20130167980
    Abstract: This high-strength steel sheet includes by mass percentage: 0.05 to 0.4% of C; 0.1 to 2.5% of Si; 1.0 to 3.5% of Mn; 0.001 to 0.03% of P; 0.0001 to 0.01% of S; 0.001 to 2.5% of Al; 0.0001 to 0.01% of N; 0.0001 to 0.008% of O; and a remainder composed of iron and inevitable impurities, wherein a steel sheet structure contains by volume fraction 10 to 50% of a ferrite phase, 10 to 50% of a tempered martensite phase, and a remaining hard phase, wherein a 98% hardness is 1.5 or more times as high as a 2% hardness in a range from ? to ? of a thickness of the steel sheet, wherein a kurtosis K* of the hardness distribution between the 2% hardness and the 98% hardness is ?1.2 to ?0.4, and wherein an average crystal grain size in the steel sheet structure is 10 ?m or less.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 4, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Naoki Yoshinaga, Chisato Wakabayashi, Noriyuki Suzuki
  • Patent number: 8460481
    Abstract: The invention is directed to providing, for application in automobiles, construction materials, household appliances and the like, high-strength sheets excellent in formability properties such as hole expansibility and ductility, and also in fatigue resistance, characterized in comprising, in specified contents expressed in mass %, C, Si, Mn, P, S, Al, N and O and a balance of iron and unavoidable impurities, and having a steel sheet structure composed mainly of ferrite and hard structures, a crystal orientation difference between some ferrite adjacent to hard structures and the hard structures of less than 9°, and a maximum tensile strength of 540 MPa or greater.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: June 11, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masafumi Azuma, Noriyuki Suzuki, Naoki Maruyama, Naoki Yoshinaga, Akinobu Murasato
  • Publication number: 20130066982
    Abstract: An information obtaining unit (11) obtains transmission-intended information input by an information sender, a candidate propagation NW obtaining unit (12) searches and obtains a candidate propagation network corresponding to the kind of the transmission-intended information among propagation networks each including information on a sender user, a recipient user, a kind of information transmitted from the sender user to the recipient user, and a number, a probability, a time or a combination thereof of transmission of the information of the kind from the sender user to the recipient user. A recommended propagation NW specifying unit (13) obtains, among the candidate propagation networks, the candidate propagation network having the highest expected value of the total number of the users to whom information will be propagated within a predetermined time as a recommended propagation network. A display generator unit (14) presents the recommended propagation network to the information sender.
    Type: Application
    Filed: December 28, 2010
    Publication date: March 14, 2013
    Inventors: Naoki Yoshinaga, Satoko Itaya, Peter Davis, Rle Tanaka, Taku Konishi, Shinichi Doi
  • Publication number: 20130037180
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 14, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita
  • Publication number: 20130008568
    Abstract: A high-strength steel sheet includes, by mass %, C: 0.03% to 0.30%, Si: 0.08% to 2.1%, Mn: 0.5% to 4.0%, P: 0.05% or less, S: 0.0001% to 0.1%, N: 0.01% or less, acid-soluble Al: more than 0.004% and less than or equal to 2.0%, acid-soluble Ti: 0.0001% to 0.20%, at least one selected from Ce and La: 0.001% to 0.04% in total, and a balance of iron and inevitable impurities, in which [Ce], [La], [acid-soluble Al], and [S] satisfy 0.02?([Ce]+[La])/[acid-soluble Al]<0.25, and 0.4?([Ce]+[La])/[S]?50 in a case in which the mass percentages of Ce, La, acid-soluble Al, and S are defined to be [Ce], [La], [acid-soluble Al], and [S], respectively, and a microstructure includes 1% to 50% of martensite in terms of an area ratio.
    Type: Application
    Filed: May 10, 2011
    Publication date: January 10, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yoshihiro Suwa, Kenichi Yamamoto, Daisuke Maeda, Satoshi Hirose, Genichi Shigesato, Naoki Yoshinaga
  • Publication number: 20120331101
    Abstract: A communication information registering unit (11) acquires communication information that contains a sender, a receiver, and a sending time of information communicated between users that are communicating, and stores the communication information in a storage unit (12). A response time calculation unit (13) finds response time of the users from the communication information. A threshold value setting unit (14) finds a threshold value for determining the statuses of the users from distribution of frequencies of the response time. A current status determination unit (15) determines the status of a counterpart user from the response time by using the threshold value. A notification unit (16) notifies a user of the current status of its counterpart user.
    Type: Application
    Filed: December 28, 2010
    Publication date: December 27, 2012
    Applicant: NEC CORPORATION
    Inventors: Satoko Itaya, Naoki Yoshinaga, Peter Davis, Rie Tanaka, Taku Konishi, Shinichi Doi
  • Publication number: 20120305144
    Abstract: A steel sheet, including: as chemical components, by mass %, 0.05% to 0.35% of C; 0.05% to 2.0% of Si; 0.8% to 3.0% of Mn; 0.01% to 2.0% of Al; equal to or less than 0.1% of P; equal to or less than 0.05% of S; equal to or less than 0.01% of N; and the balance including iron and inevitable impurities, wherein an area ratio of equal to or higher than 50% of a total of a ferrite phase, a bainite phase, and a tempered martensite phase is contained, an area ratio of equal to or higher than 3% of a retained austenite phase is contained, and crystal grains of the retained austenite phase having a number ratio of equal to or higher than 50% satisfy Expression 1, assuming carbon concentration at a position of center of gravity is Cgc and a carbon concentration at a grain boundary is Cgb.
    Type: Application
    Filed: January 31, 2011
    Publication date: December 6, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Riki Okamoto, Natsuko Sugiura, Kohichi Sano, Chisato Wakabayashi, Naoki Yoshinaga, Kaoru Kawasaki
  • Patent number: 8163108
    Abstract: This cold-rolled steel sheet includes, in terms of mass %, C: not less than 0.05% and not more than 0.095%, Cr: not less than 0.15% and not more than 2.0%, B: not less than 0.0003% and not more than 0.01%, Si: not less than 0.3% and not more than 2.0%, Mn: not less than 1.7% and not more than 2.6%, Ti: not less than 0.005% and not more than 0.14%, P: not more than 0.03%, S: not more than 0.01%, Al: not more than 0.1%, N: less than 0.005%, O: not less than 0.0005% and not more than 0.005%, and contains as the remainder, iron and unavoidable impurities, wherein the microstructure of the steel sheet includes mainly polygonal ferrite having a crystal grain size of not more than 4 ?m, and hard microstructures of bainite and martensite, the block size of the martensite is not more than 0.9 ?m, the Cr content within the martensite is 1.1 to 1.5 times the Cr content within the polygonal ferrite, and the tensile strength is at least 880 MPa.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 24, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Azuma, Naoki Yoshinaga, Naoki Maruyama, Noriyuki Suzuki, Yasuharu Sakuma
  • Publication number: 20120077051
    Abstract: In an embodiment of a steel sheet having high Young's modulus, the steel can include in terms of mass %, e.g., C: 0.0005 to 0.30%, Si: 2.3% or less, Mn: 2.7 to 5.0%, P: 0.15% or less, 0.015% or less, Mo: 0.15 to 1.5%, B: 0.0006 to 0.01%, and Al: 0.15% or less, with the remainder being Fe and unavoidable impurities. One or both of {110}<223> pole density and {110}<111> pole density in the ? sheet thickness layer can be 10 or more, and a Young's modulus in a rolling direction can be more than 230 GPa. Other embodiments can include, e.g., Mn: 0.1 to 5.0%, N: 0.01% or less, and one or more of Mo: 0.005 to 1.5%, Nb: 0.005 to 0.20%, Ti: at least 48/14×N (mass %) and 0.2% or less, and B: 0.0001 to 0.01%, at a total content of 0.015 to 1.91 mass %.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 29, 2012
    Applicant: Nippon Steel Corporation
    Inventors: Natsuko Sugiura, Naoki Yoshinaga, Shunji Hiwatashi, Manabu Takahashi, Koji Hanya, Nobuyoshi Uno, Ryoichi Kanno, Akihiro Miyasaka, Takehide Senuma
  • Patent number: 8084143
    Abstract: High yield ratio high-strength thin steel sheet superior in weldability and ductility characterized by: being comprised of steel containing, by mass %, C: over 0.030 to less than 0.10%, Si: 0.30 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: 0.060% or less, N: 0.0001 to 0.0070%, containing further Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, and simultaneously satisfying 1.1 ?14×Ti(%)+20×Nb(%)+3×Mo(%)+300×B(%)?3.7, the balance comprised or iron and unavoidable impurities, and having a yield ratio of 0.64 to less than 0.92, a TS×E11/2 of 3320 or more, an YR×TS×EL1/2 of 2320 or more, and a maximum tensile strength (TS) of 780 MPa or more.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: December 27, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Yoshinaga, Shunji Hiwatashi, Yasuharu Sakuma, Atsushi Itami
  • Patent number: 8070889
    Abstract: The invention is directed to providing, for application in automobiles, construction materials, household appliances and the like, high-strength sheets excellent in formability properties such as hole expansibility and ductility, and also in fatigue resistance, characterized in comprising, in specified contents expressed in mass %, C, Si, Mn, P, S, Al, N and O and a balance of iron and unavoidable impurities, and having a steel sheet structure composed mainly of ferrite and hard structures, a crystal orientation difference between some ferrite adjacent to hard structures and the hard structures of less than 9°, and a maximum tensile strength of 540 MPa or greater.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: December 6, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Azuma, Noriyuki Suzuki, Naoki Maruyama, Naoki Yoshinaga, Akinobu Murasato
  • Patent number: 8057913
    Abstract: One aspect of the steel sheet having high Young's modulus includes in terms of mass %, C: 0.0005 to 0.30%, Si: 2.5% or less, Mn: 2.7 to 5.0%, P: 0.15% or less, S: 0.015% or less, Mo: 0.15 to 1.5%, B: 0.0006 to 0.01%, and Al: 0.15% or less, with the remainder being Fe and unavoidable impurities, wherein one or both of {110}<223> pole density and {110}<111> pole density in the ? sheet thickness layer is 10 or more, and a Young's modulus in a rolling direction is more than 230 GPa. Another aspect of the steel sheet having high Young's modulus includes, in terms of mass %, C: 0.0005 to 0.30%, Si: 2.5% or less, Mn: 0.1 to 5.0%, P: 0.15% or less, S: 0.015% or less, Al: 0.15% or less, N: 0.01% or less, and further comprises one or two or more of Mo: 0.005 to 1.5%, Nb: 0.005 to 0.20%, Ti: at least 48/14×N (mass %) and 0.2% or less, and B: 0.0001 to 0.01%, at a total content of 0.015 to 1.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: November 15, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Natsuko Sugiura, Naoki Yoshinaga, Shunji Hiwatashi, Manabu Takahashi, Koji Hanya, Nobuyoshi Uno, Ryoichi Kanno, Akihiro Miyasaka, Takehide Senuma
  • Patent number: 8052807
    Abstract: The present invention provides a steel sheet excellent in workability, which may be used for components of an automobile or the like, and a method for producing the same. More specifically, according to one exemplary embodiment of the present invention, a steel sheet excellent in workability, including in mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, at most 0.05% S, 0.001 to 0.007% N, 0.008 to 0.2% Al, at least 0.01% Fe. The steel sheet having an average r-value of at least 1.2, an r-value in the rolling direction of at least 1.3, an r-value in the direction of 45 degrees to the rolling direction of at least 0.9, and an r-value in the direction of a right angle to the rolling direction of at least 1.2.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: November 8, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Yoshinaga, Nobuhiro Fujita, Manabu Takahashi, Koji Hashimoto, Shinya Sakamoto, Kaoru Kawasaki, Yasuhiro Shinohara, Takehide Senuma